• Title/Summary/Keyword: long fiber fraction

Search Result 34, Processing Time 0.028 seconds

Quantitative Analysis of Pulp Fiber Characteristics that Affect Paper Properties(I) (종이의 특성에 영향하는 펄프 섬유특성의 정량적 해석(I))

  • 이강진;박중문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Refining is one of the most important processes of fiber treatment that provides optical and physical properties of final paper products. The evaluation method of refining progress is usually freeness (CSF) or wetness (SR) test because of its rapidity and convenience. However, there are some deficiencies in using freeness or wetness test to evaluate pulp fibers accurately because its results are more influenced by fines contents than extent of fibers treatment. The objective of this study is to show the deficiency of wetness in evaluating the refining process. For this, beating is done by varying the beating load. Handsheets are made after beating until 25 and $32^{\circ}C$ SR, and then paper properties are measured. Refined fibers are analyzed by fiber length, fines contents, curl, kink, WRV, and zero-span tensile strength. The results show that longer beating time is required to reach the same wetness at lower beating load. There are differences in the average fiber length, distribution curve of fiber length, fines contents, curl, kink, WRV of long fiber fraction, drainage time, and zero-span tensile strength of rewetted sample at different beating load. At the low beating load in the same wetness, apparent density, breaking length, burst strength, and tear strength are higher, while opacity and air permeability are lower than those of the high beating load. Using Page s equation, which shows the relationship among tensile strength, intrinsic fiber strength, and interfiber bonding strength, interfiber bonding strength is calculated and analyzed to explain final paper properties. At $25^{\circ}C$ SR, interfiber bonding strength is only slightly higher at 2.5kgf beating load, while the intrinsic fiber strength is substantially higher. At $32^{\circ}C$ SR, intrinsic fiber strength is a little bit higher at 2.5kgf beating load, and interfiber bonding strength is remarkably higher than those of 5.6kgf beating load. These results can be used to explain the different properties of the final paper at selected beating loads.

  • PDF

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

Effect of fiber type and content on properties of high-strength fiber reinforced self-consolidating concrete

  • Tuan, Bui Le Anh;Tesfamariam, Mewael Gebregirogis;Hwang, Chao-Lung;Chen, Chun-Tsun;Chen, Yuan-Yuan;Lin, Kae-Long
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.299-313
    • /
    • 2014
  • Effects of polypropylene (PP) fibers, steel fibers (SF) and hybrid on the properties of highstrength fiber reinforced self-consolidating concrete (HSFR-SCC) under different volume contents are investigated in this study. Comprehensive laboratory tests were conducted in order to evaluate both fresh and hardened properties of HSFR-SCC. Test results indicated that the fiber types and fiber contents greatly influenced concrete workability but it is possible to achieve self consolidating properties while adding the fiber types in concrete mixtures. Compressive strength, dynamic modulus of elasticity, and rigidity of concrete were affected by the addition as well as volume fraction of PP fibers. However, the properties of concrete were improved by the incorporation of SF. Splitting tensile and flexural strengths of concrete became increasingly less influenced by the inclusion of PP fibers and increasingly more influenced by the addition of SF. Besides, the inclusion of PP fibers resulted in the better efficiency in the improvement of toughness than SF. Furthermore, the inclusion of fibers did not have significant effect on the durability of the concrete. Results of electrical resistivity, chloride ion penetration and ultrasonic pulse velocity tests confirmed that HSFR-SCC had enough endurance against deterioration, lower chloride ion penetrability and minimum reinforcement corrosion rate.

Effets of Steel Fiber Contents on Flexural Creep Behavior of High-Strength Concrete (강섬유 혼입률에 따른 고강도 콘크리트의 휨 크리프 특성)

  • Lim, Seong-Hoon;Kim, Dong-Hwi;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • In this paper, the flexural creep behavior of hooked-end steel fiber reinforced high-strength concrete was evaluated to investigate the steel fiber content influence on long-term behavior of flexural members. An experimental program consisted of nine prismatic beam specimens with dimensions of 150 × 150 × 600mm reinforced with different contents of steel fiber (0, 0.75 and 1.5% at the volume fraction). To introduce flexural creep loading to notched prismatic beam specimens, a four-point bending test setup was used. The sustained load with 40% of the flexural strength was applied by means of a lever system and controlled by a load cell for 90 days. During sustained loading, crack mouth opening displacement (CMOD) was monitored. Conventional flexural test after creep tests were carried out to evaluate the residual capacity of each specimen. Test results showed that steel fiber content has a significant effect on the flexural creep behavior of high-strength concrete and long-term flexural load with 40% of flexural strength doesn't generate negative effects on the residual capacity of steel fiber reinforced high-strength concrete.

Strength and Crack-Damage Control Characteristics of Concrete Beams Layered with Strain-Hardening Cement Composites (SHCCs) (변형 경화형 시멘트 복합체로 단면 대체된 콘크리트 보의 강도 및 균열손상 제어 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Soo;Jang, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • This paper reports on the cracking mitigation and flexural behavior experimentally observed in concrete prisms layered with strain-hardening cement composites (SHCCs) which is micro-mechanically designed cement composite and exhibits pseudo tensile strain-hardening behavior accompanied by multiple cracking while using a moderate amount of fiber, typically less than 2 percent in term of fiber volume fraction. In this study, SHCC is reinforced with 1.3 percent polyvinyl alcohol (PVA) and 0.20 percent polyethylene (PE) in volume fraction. Tests were conducted using $100{\times}100{\times}400mm$ long prisms supported over a simply supported span of 350mm. The four point load was applied using MTS servo control machine. The thickness patched with SHCC is the main variable for this study. Experimental study shows that when subject to monotonic flexural loading, the SHCC layered repair system showed 2.7 - 4.2 times increased load carrying capacity, and mitigated cracking damage of concrete beams layered with SHCC compared with plain concrete beams.

  • PDF

Development and Analysis of the Autoclave Alternative Composite Material Molding Process Using a Pressure Device (가압장치를 이용한 오토클레이브 대체 복합재료 성형공정 개발 및 분석)

  • Kim, Jung-Soo;Kim, Byung-Ha;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.254-259
    • /
    • 2014
  • In this study, a device and pressure press process that is able to substitute autoclave process is developed. This process complements disadvantages of autoclave process which are long process-time and high production cost. The developed device provides air pressure as well as the vacuum which are greatest feature of autoclave process. The device is sealed using hydraulic pressure to keep the air pressure inside the mold. The transfer of the heat is designed to be direct. The heating and pressure charging time are decreased by reducing the interior space. Tooling cost is reduced dramatically compared to autoclave process. Spring-back phenomenon is measured and compared. The temperatures of several parts of the mold during molding are measured. The fiber volume fraction of the parts molded by autoclave process and by the developed process are compared.

Recycling of Wastepaper(13) -Selective Treatment of Flocculant on Fractionated OCC Fines- (고지재생연구(제13보) -부상부유의 응집처리에 의한 골판지 고지의 탈수성 및 강도 향상 방법-)

  • 여성국;류정용;신종호;송봉근;김진두
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • The base paper of corrugated board is mainly produced from Korean old corrugated container (KOCC), and thus the recycling rate of KOCC is very high. However, there is a problem that the pulp quality is very low while the recycling rate of OCC is high. The fines content in KOCC, the main source of the corrugated board, amounts to nearly the half of the total stock, and its formation increases as recycling process repeats due to the hornification of fiber. There have been attempts to improve the drainage property of OCC by increasing the headbox concentration of the paper machine or by applying drainage-promoting polymer additives. However, these conventional methods have problems of weakened paper strength and lowered converting fitness caused by paper formation hindrance. The strength of linerboard could not be increased in case KOCC is used, because hornified OCC pulp can-not be sufficiently refined due to the lowered drainage property caused by fines formation. We studied about a new technique consisting of froth-flotation for fractionating pulp stock into a long fiber portion and fines fraction. This study will be developed in order to enhance the drainage and strength properties of a recycled OCC pulp by selective treatment of flocculant on fractionated OCC Fines.

  • PDF

Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple anisotropic inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects of the number of anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy of the method is validated by solving the single inclusion problem for which solutions are available in the literature.

Recycling of Wastepaper(II) -Improvement of Drainage and Strength Properties of Testliner by Successive Treatments of Flotation and Mixed Enzyme- (고재재생연구(제2보)-부상부유 및 효소처리에 의한 라이너지의 탈수성 및 강도 개선)

  • 지경락;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.10-16
    • /
    • 1999
  • Air froth flotation was applied to OCC recycling process as a new pulp fractionation method and the effects of strength and drainage properties of testliner were also investigated. Fines including inks, stickies, and inorganic substances in OCC stock furnish were efficiently separated by the flotation. After the flotation, selective enzymatic treatment on the flotation reject was separately preformed, and then, the refined long fiber(flotation accept) portion was combined again with the fines(flotation reject) fraction for papermaking. This combination process was found to be effective in improving strength and drainage properties of testliner based on 100% OCC.

  • PDF

Tensile Stress-Crack Opening Relationship of Ultra High Performance Cementitious Composites(UHPCC) Used for Bridge Decks (바닥판 적용 초고성능 시멘트 복합체의 인장응력-균열개구 관계)

  • Kwon, Seung Hee;Lee, Seung Kook;Park, Sung Yong;Cho, Keun Hee;Cho, Jeong Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.46-54
    • /
    • 2013
  • Two different UHPCCs having different fiber lengths and volume fractions are considered to be applied to bridge decks. The objective of this study is to estimate cracking resistance of the two UHPCCs. The notched beam tests were performed with the UHPCCs, and the relationships between load and CMOD(Crack Mouth Opening Displacement) were obtained from the tests. The tensile stress and crack opening relationships optimally fitting the measured load-CMOD curves were found through the inverse analyses. The UHPCC with 2% volume fraction of 13 mm long fiber has lower fracture energy than the UHPCC with 0.5% and 1.0% volume fractions of 16.3 mm and 19.5 mm long fibers, respectively. It indicates that the latter UHPCC is more effective in uniformly distributing crack formation and reducing crack width.