• Title/Summary/Keyword: long distance face recognition

Search Result 12, Processing Time 0.02 seconds

Long Distance Face Recognition System using the Automatic Face Image Creation by Distance (거리별 얼굴영상 자동 생성 방법을 이용한 원거리 얼굴인식 시스템)

  • Moon, Hae Min;Pan, Sung Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.137-145
    • /
    • 2014
  • This paper suggests an LDA-based long distance face recognition algorithm for intelligent surveillance system. The existing face recognition algorithm using single distance face image as training images caused a problem that face recognition rate is decreased with increasing distance. The face recognition algorithm using face images by actual distance as training images showed good performance. However, this also causes user inconvenience as it requires the user to move one to five meters in person to acquire face images for initial user registration. In this paper, proposed method is used for training images by using single distance face image to automatically create face images by various distances. The test result showed that the proposed face recognition technique generated better performance by average 16.3% in short distance and 18.0% in long distance than the technique using the existing single distance face image as training. When it was compared with the technique that used face images by distance as training, the performance fell 4.3% on average at a close distance and remained the same at a long distance.

The Long Distance Face Recognition using Multiple Distance Face Images Acquired from a Zoom Camera (줌 카메라를 통해 획득된 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 기술)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1139-1145
    • /
    • 2014
  • User recognition technology, which identifies or verifies a certain individual is absolutely essential under robotic environments for intelligent services. The conventional face recognition algorithm using single distance face image as training images has a problem that face recognition rate decreases as distance increases. The face recognition algorithm using face images by actual distance as training images shows good performance but this has a problem that it requires user cooperation. This paper proposes the LDA-based long distance face recognition method which uses multiple distance face images from a zoom camera for training face images. The proposed face recognition technique generated better performance by average 7.8% than the technique using the existing single distance face image as training. Compared with the technique that used face images by distance as training, the performance fell average 8.0%. However, the proposed method has a strength that it spends less time and requires less cooperation to users when taking face images.

Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm (영상 정규화 및 얼굴인식 알고리즘에 따른 거리별 얼굴인식 성능 분석)

  • Moon, Hae-Min;Pan, Sung Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2013
  • The surveillance system has been developed to be intelligent which can judge and cope by itself using human recognition technique. The existing face recognition is excellent at a short distance but recognition rate is reduced at a long distance. In this paper, we analyze the performance of face recognition according to interpolation and face recognition algorithm in face recognition using the multiple distance face images to training. we use the nearest neighbor, bilinear, bicubic, Lanczos3 interpolations to interpolate face image and PCA and LDA to face recognition. The experimental results show that LDA-based face recognition with bilinear interpolation provides performance in face recognition.

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots (모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출)

  • Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA (역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석)

  • Moon, Hae-Min;Park, Jin-Won;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • To satisfy the needs of high-level intelligent surveillance system, it shall be able to extract objects and classify to identify precise information on the object. The representative method to identify one's identity is face recognition that is caused a change in the recognition rate according to environmental factors such as illumination, background and angle of camera. In this paper, we analyze the robust face recognition of face image by changing the distance through a variety of experiments. The experiment was conducted by real face images of 1m to 5m. The method of face recognition based on Linear Discriminant Analysis show the best performance in average 75.4% when a large number of face images per one person is used for training. However, face recognition based on Convolution Neural Network show the best performance in average 69.8% when the number of face images per one person is less than five. In addition, rate of low resolution face recognition decrease rapidly when the size of the face image is smaller than $15{\times}15$.

Tiny and Blurred Face Alignment for Long Distance Face Recognition

  • Ban, Kyu-Dae;Lee, Jae-Yeon;Kim, Do-Hyung;Kim, Jae-Hong;Chung, Yun-Koo
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.251-258
    • /
    • 2011
  • Applying face alignment after face detection exerts a heavy influence on face recognition. Many researchers have recently investigated face alignment using databases collected from images taken at close distances and with low magnification. However, in the cases of home-service robots, captured images generally are of low resolution and low quality. Therefore, previous face alignment research, such as eye detection, is not appropriate for robot environments. The main purpose of this paper is to provide a new and effective approach in the alignment of small and blurred faces. We propose a face alignment method using the confidence value of Real-AdaBoost with a modified census transform feature. We also evaluate the face recognition system to compare the proposed face alignment module with those of other systems. Experimental results show that the proposed method has a high recognition rate, higher than face alignment methods using a manually-marked eye position.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

A Multi-Scale Parallel Convolutional Neural Network Based Intelligent Human Identification Using Face Information

  • Li, Chen;Liang, Mengti;Song, Wei;Xiao, Ke
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1494-1507
    • /
    • 2018
  • Intelligent human identification using face information has been the research hotspot ranging from Internet of Things (IoT) application, intelligent self-service bank, intelligent surveillance to public safety and intelligent access control. Since 2D face images are usually captured from a long distance in an unconstrained environment, to fully exploit this advantage and make human recognition appropriate for wider intelligent applications with higher security and convenience, the key difficulties here include gray scale change caused by illumination variance, occlusion caused by glasses, hair or scarf, self-occlusion and deformation caused by pose or expression variation. To conquer these, many solutions have been proposed. However, most of them only improve recognition performance under one influence factor, which still cannot meet the real face recognition scenario. In this paper we propose a multi-scale parallel convolutional neural network architecture to extract deep robust facial features with high discriminative ability. Abundant experiments are conducted on CMU-PIE, extended FERET and AR database. And the experiment results show that the proposed algorithm exhibits excellent discriminative ability compared with other existing algorithms.

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.