International Journal of Computer Science & Network Security
/
제21권7호
/
pp.350-358
/
2021
In modern years, the performance of the students is analysed with lot of difficulties, which is a very important problem in all the academic institutions. The main idea of this paper is to analyze and evaluate the academic performance of the college students with bipolar disorder by applying data mining classification algorithms using Jupiter Notebook, python tool. This tool has been generally used as a decision-making tool in terms of academic performance of the students. The various classifiers could be logistic regression, random forest classifier gini, random forest classifier entropy, decision tree classifier, K-Neighbours classifier, Ada Boost classifier, Extra Tree Classifier, GaussianNB, BernoulliNB are used. The results of such classification model deals with 13 measures like Accuracy, Precision, Recall, F1 Measure, Sensitivity, Specificity, R Squared, Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, TPR, TNR, FPR and FNR. Therefore, conclusion could be reached that the Decision Tree Classifier is better than that of different algorithms.
Currently, the budget for vocational competency development training has been expanded, but the number of participants has decreased. As the budget for the Vocational Competency Development Project increases, the participation of a large number of people becomes necessary. This study aims to derive factors that affect satisfaction by selecting factors related to respondent characteristics, training institutions, training types, and job performance for satisfaction with vocational competency development training, and to study ways to improve satisfaction. Data were collected through focus group interviews (FGI), and logistic regression analysis was conducted through feasibility review and reliability analysis. As a result, in the case of the model, it was confirmed that the degree of agreement between the case actually measured and the case predicted by the model was low in the Hosmer and Lemeshow test, but the overall classification accuracy was classified as 96.0% in the classification accuracy table. As for the influence of the factors, the result was derived that the application of knowledge technology, training institution facility equipment, Business Collaboration, long-term work plan, and satisfaction with work performed have an influence in the order.
The discrimination of the source for xenon gases' release can provide an important clue for detecting the nuclear activities in the neighboring countries. In this paper, three machine learning techniques, which are logistic regression, support vector machine (SVM), and k-nearest neighbors (KNN), were applied to develop the predictive models for discriminating the source for xenon gases' release based on the xenon isotopic activity ratio data which were generated using the depletion codes, i.e., ORIGEN in SCALE 6.2 and Serpent, for the probable sources. The considered sources for the neighboring countries of South Korea include PWRs, CANDUs, IRT-2000, Yongbyun 5 MWe reactor, and nuclear tests with plutonium and uranium. The results of the analysis showed that the overall prediction accuracies of models with SVM and KNN using six inputs, all exceeded 90%. Particularly, the models based on SVM and KNN that used six or three xenon isotope activity ratios with three classification categories, namely reactor, plutonium bomb, and uranium bomb, had accuracy levels greater than 88%. The prediction performances demonstrate the applicability of machine learning algorithms to predict nuclear threat using ratios of xenon isotopic activity.
Isil Sanri Karapinar;Ayse E. Ozsoy Ozbay;Emin Ciftci
Structural Engineering and Mechanics
/
제91권3호
/
pp.279-289
/
2024
The purpose of this study is to represent a useful alternative for the preliminary seismic vulnerability assessment of existing reinforced concrete buildings by introducing a statistical approach employing the binary logistic regression technique. Two different predictive statistical models, namely full and reduced models, were generated utilizing building characteristics obtained from the damage database compiled after 1999 Düzce earthquake. Among the inspected building parameters, number of stories, overhang ratio, priority index, soft story index, normalized redundancy ratio and normalized lateral stiffness index were specifically selected as the predictor variables for vulnerability classification. As a result, normalized redundancy ratio and soft story index were identified as the most significant predictors affecting seismic vulnerability in terms of life safety performance level. In conclusion, it is revealed that both models are capable of classifying the set of buildings being severely damaged or collapsed with a balanced accuracy of 73%, hence, both are able to filter out high-priority buildings for life safety performance assessment. Thus, in this study, having the same high accuracy as the full model, the reduced model using fewer predictors is proposed as a simple and viable classifier for determining life safety levels of reinforced concrete buildings in the preliminary seismic risk assessment.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1305-1315
/
2015
ROC 곡선을 구성하는 한 개의 스코어 변수로 이루어진 분류모형을 확장하여 선형 스코어의 함수인 리스크 스코어를 고려하고, 선형 스코어의 계수를 추정하기 위한 방법으로 AUC를 최대화하는 방법을 사용한다. 이런 AUC 접근방법으로 구한 스코어의 계수 추정량은 로지스틱모형을 이용한 선형 스코어의 모수의 최대가능도 추정량보다 자료가 로지스틱 가정이 맞지 않는 일반적인 상황에서도 좋은 추정 결과를 보인다. 본 연구에서는 다항범주로 분류되어 현실적인 판별 및 예측 상황을 고려하여 AUC 접근방법을 확장한 VUS와 HUM 접근방법을 제안한다. 연결함수로는 로짓, complementary log-log와 로짓을 변형한 함수의 세 종류와 그리고 다양한 분류점의 분포인 경우에 대하여도 모의실험을 실시하였다. 본 논문에서는 다항범주 판별결과에 대하여 VUS와 HUM 접근방법도 AUC 접근방법과 유사하게 다양한 연결함수에 대하여 로지스틱모형 추정방법보다 동등하거나 더 나은 모수추정 결과를 보이는 것을 확인하였다.
본 연구에서는 불균형 데이터 환경에서 기계학습 기법의 한 갈래인 로지스틱 회귀모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수 해역에서 추출된 수출광량 분광 프로파일을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 이 때, 청수와 탁수에 비해 자료 수가 상대적으로 적은 적조의 분광 프로파일에 백색 잡음을 추가하여 오버샘플링을 하여 불균형 데이터 문제를 해결하였다. 정확도 평가 결과 본 연구에서 제안하는 알고리즘은 약 94%의 분류 정확도를 보였다.
본 논문은 중도중단 데이터가 포함된 생존데이터의 경우 적용할 수 있는 기계학습 방법에 대해 살펴보았다. 우선 탐색적인 자료분석으로 각 특성에 대한 분포, 여러 특성들 간의 관계 및 중요도 순위를 파악할 수 있었다. 다음으로 독립변수에 해당하는 여러 특성들과 종속변수에 해당하는 특성(사망여부) 간의 관계를 분류문제로 보고 logistic regression, K nearest neighbor 등의 기계학습 방법들을 적용해본 결과 적은 수의 데이터이지만 통상적인 기계학습 결과에서와 같이 logistic regression보다는 random forest가 성능이 더 좋게 나왔다. 하지만 근래에 성능이 좋다고 하는 artificial neural network나 gradient boost와 같은 기계학습 방법은 성능이 월등히 좋게 나오지 않았는데, 그 이유는 주어진 데이터가 빅데이터가 아니기 때문인 것으로 판명된다. 마지막으로 Kaplan-Meier나 Cox의 비례위험모델과 같은 통상적인 생존분석 방법을 적용하여 어떤 독립변수가 종속변수 (ti, δi)에 결정적인 영향을 미치는지 살펴볼 수 있었으며, 기계학습 방법에 속하는 random forest를 중도중단 데이터가 포함된 생존데이터에도 적용하여 성능을 평가할 수 있었다.
Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare performance of algorithms for data analysis of industrial accidents and this paper provides a comparative analysis of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. In this study, data on 67,278 accidents were analyzed to create risk groups for a number of complications, including the risk of disease and accident. The sample for this work chosen from data related to manufacturing industries during three years $(2002\sim2004)$ in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.
International journal of advanced smart convergence
/
제5권1호
/
pp.30-33
/
2016
With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.
Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.