ARMA(p, q) 모형 분석에서 분산 안정화 또는 정규화를 위해 멱변환(power transformation)이 사용된다. 변환된 자료를 이용하여 분석이 이루어지며 원 자료의 예측을 위해 재변환이 사용된다. 이때 흔히 변환된 자료 분석에서 얻어진 예측값의 역함수 값이 원자료 예측값으로 사용되지만 이는 편향이 있는 것으로 알려져 있다. 이를 해결하기 위해 로그 변환의 경우 Granger과 Newbold (1976)는 로그-정규분포의 기댓값을 이용할 것을 제안하였다. 본 연구에서는 모의실험을 통하여 제곱근 변환과 로그 변환 후 재변환을 사용할 때 예측값으로 기댓값의 역함수를 이용하는 방법과 역함수의 기댓값을 사용하였을 때의 추정의 결과를 모의실험을 통하여 비교하였다.
In this paper, we propose a log management service model for efficient developments of android applications. The proposed model consists of two major parts which are the log collector and the log manager service. The log collector can capture the log information of a target application without modifications, because the collector is composed by aspect-oriented programming. The collected logs are transformed to chunk of data, and the chunk of data is sent to the log management service. The log management service is an android service component and an independent application in another process. So, the log management service can reduce the workload of logging in the target application. Through a case study, we show that the proposed log management service model can reduce the log processing time compared to other models without modifications of a target application.
Logarithmic transformation of pharmacokinetic parameters is routinely used in bioequivalence studies based on pharmacokinetic and statistical grounds by the United States Food and Drug Administration (FDA), European Committee for Proprietary Medicinal Products (CPMP), and Japanese National Institute of Health and Science (NIHS). Although it has not yet been recommended by the Korea Food and Drug Administration (KFDA), its use is becoming increasingly necessary in order to harmonize with international standards. In the present study, statistical procedures for the analysis of a bioequivalence based on the log transformation and a related SAS procedure were demonstrated in order to aid the understanding and application. The AUC parameters used in this demonstration were taken from the previous bioequivalence study for two aceclofenac tablets, which were performed in a single-dose crossover design. Analysis of variance (ANOVA), statistical power to detect 20% difference between the tablets, minimum detectable difference and confidence intervals were all assessed following log-transformation of the data. Bioequivalence of two aceclofenac tablets was then estimated based on the guideline of FDA. Considering the international effort for harmaonization of guidelines for bioequivalence tests, this approach may require a further evaluation for a future adaptation in the Korea Guidelines of Bioequivalence Tests (KGBT).
Using the data of three environmental monitoring sites in Pohang area(KME112, KME113, and KME114), statistical forecasting models of the daily maximum and mean values of PM10 have been developed. Since the distributions of the daily maximum and mean PM10 values are skewed, which are similar to the Weibull distribution, these values were log-transformed to increase prediction accuracy by approximating the normal distribution. Three statistical forecasting models, which are regression, neural networks(NN) and support vector regression(SVR), were built using the log-transformed response variables, i.e., log(max(PM10)) or log(mean (PM10)). Also, the forecasting models were validated by the measure of RMSE, CORR, and IOA for the model comparison and accuracy. The improvement rate of IOA before and after the log-transformation in the daily maximum PM10 prediction was 12.7% for the regression and 22.5% for NN. In particular, 42.7% was improved for SVR method. In the case of the daily mean PM10 prediction, IOA value was improved by 5.1% for regression, 6.5% for NN, and 6.3% for SVR method. As a conclusion, SVR method was found to be performed better than the other methods in the point of the model accuracy and fitness views.
수위-유량 관계 곡선을 나타내는 곡선식에 포함되어 있는 매개변수의 추정을 위해 많이 사용되는 로그선형 회귀분석은 잔차의 비등분산성(heteroscedasticity)을 고려하지 못하므로 본 연구에서는 의사우도추정법(pseudolikelihood estimation, P-LE)에 의해 분산함수를 추정하고 이와 함께 회귀계수를 추정할 수 있는 방법을 제시하였다. 이 과정에서 제시된 회귀잔차를 최소화하기 위하여 SA(simulated annealing)이라는 전역 최적화 알고리즘을 적용하였다. 또한 수위-유량 관계 곡선은 단면 등의 영향으로 인해 구간에 따라 각각 다르게 구축되어져야 하므로 이를 보다 객관적으로 판단하고 분리 위치를 추정하기 위하여 Heaviside 함수를 의사우도함수에 포함시켜 결과를 추정하도록 하였으며, 2개의 구간을 가지는 유량자료를 이용하여 제시된 방법의 합리성을 통계적으로 실험하였다. 이와 같이 통계적 실험을 통해 제시된 방법들이 기존 방법과 비교하여 가질 수 있는 장점을 파악하였으며, 제시된 방법들을 금강유역 5개 지점에서 대해 수행하여 효율성을 검증하였다.
Communications for Statistical Applications and Methods
/
제31권4호
/
pp.409-425
/
2024
Logistic regression models are commonly used to explain binary health outcome variable using independent variables such as patient characteristics in medical science and public health research. Although there is no distributional assumption required for independent variables in logistic regression, variables with severely right-skewed distribution such as lab values are often log-transformed to achieve symmetry or approximate normality. However, lab values often have zeros due to limit of detection which makes it impossible to apply log-transformation. Therefore, preprocessing to handle zeros in the observation before log-transformation is necessary. In this study, five methods that remove zeros (shift by 1, shift by half of the smallest nonzero, shift by square root of the smallest nonzero, replace zeros with half of the smallest nonzero, replace zeros with the square root of the smallest nonzero) are investigated in logistic regression setting. To evaluate performances of these methods, we performed a simulation study based on randomly generated data from log-normal distribution and logistic regression model. Shift by 1 method has the worst performance, and overall shift by half of the smallest nonzero method, replace zeros with half of the smallest nonzero method, and replace zeros with the square root of the smallest nonzero method showed comparable and stable performances.
In this paper, we focus on the pinwheel task model with a variable voltage processor with d discrete voltage/speed levels. We propose an intra-task DVS algorithm, which constructs a minimum energy schedule for k tasks in O(d+k log k) time We also give an inter-task DVS algorithm with O(d+n log n) time, where n denotes the number of jobs. Previous approaches solve this problem by generating a canonical schedule beforehand and adjusting the tasks' speed in O(dn log n) or O($n^3$) time. However, the length of a canonical schedule depends on the hyper period of those task periods and is of exponential length in general. In our approach, the tasks with arbitrary periods are first transformed into harmonic periods and then profile their key features. Afterward, an optimal discrete voltage schedule can be computed directly from those features.
This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.
Sanghun Jeon;Jieun Lee;Dohyeon Yeo;Yong-Ju Lee;SeungJun Kim
ETRI Journal
/
제46권1호
/
pp.22-34
/
2024
Exposure to varied noisy environments impairs the recognition performance of artificial intelligence-based speech recognition technologies. Degraded-performance services can be utilized as limited systems that assure good performance in certain environments, but impair the general quality of speech recognition services. This study introduces an audiovisual speech recognition (AVSR) model robust to various noise settings, mimicking human dialogue recognition elements. The model converts word embeddings and log-Mel spectrograms into feature vectors for audio recognition. A dense spatial-temporal convolutional neural network model extracts features from log-Mel spectrograms, transformed for visual-based recognition. This approach exhibits improved aural and visual recognition capabilities. We assess the signal-to-noise ratio in nine synthesized noise environments, with the proposed model exhibiting lower average error rates. The error rate for the AVSR model using a three-feature multi-fusion method is 1.711%, compared to the general 3.939% rate. This model is applicable in noise-affected environments owing to its enhanced stability and recognition rate.
The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.