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Effect of zero imputation methods for log-transformation
of independent variables in logistic regression
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Abstract

Logistic regression models are commonly used to explain binary health outcome variable using indepen-
dent variables such as patient characteristics in medical science and public health research. Although there is
no distributional assumption required for independent variables in logistic regression, variables with severely
right-skewed distribution such as lab values are often log-transformed to achieve symmetry or approximate nor-
mality. However, lab values often have zeros due to limit of detection which makes it impossible to apply
log-transformation. Therefore, preprocessing to handle zeros in the observation before log-transformation is nec-
essary. In this study, five methods that remove zeros (shift by 1, shift by half of the smallest nonzero, shift by
square root of the smallest nonzero, replace zeros with half of the smallest nonzero, replace zeros with the square
root of the smallest nonzero) are investigated in logistic regression setting. To evaluate performances of these
methods, we performed a simulation study based on randomly generated data from log-normal distribution and
logistic regression model. Shift by 1 method has the worst performance, and overall shift by half of the smallest
nonzero method, replace zeros with half of the smallest nonzero method, and replace zeros with the square root
of the smallest nonzero method showed comparable and stable performances.

Keywords: log transformation, zero imputation, skewed distribution, logistic regression, limit of
detection

1. Introduction

In studies in medical science or public health, the health outcome we want to predict or explain with
independent variables is often binary. For example, the outcome could be whether a patient has a
specific disease or not (e.g. diabetic or not), or it could be whether a patient develops a new condition
within a certain period of time (e.g. recurrence of cancer within 3 years since surgery). This makes
logistic regression one of the most commonly used methods among others in health research.
Logistic regression assumes that the response variable follows the Bernoulli distribution and the
probability of “success” is equal to the logistic function of linear combination of independent vari-
ables. There is no distributional assumption required for the independent variables in logistic re-
gression. However, when an independent variable has a very skewed distribution to the right, it is
common to apply log transformation of such variables in medical science and public health (Ekwaru
and Veugelers, 2018; Feng et al., 2014). A typical example of variables with right-skewed distribution
includes lab values such as Creatinine, CRP (C-Reactive Protein), or CA19-9 (Carbohydrate antigen
19-9). These variables tend to have values within a “normal” range when the patient is healthy, but
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can have much higher values, sometimes multiple hundred times the normal value, when the patient
is in an abnormal condition. This makes the distribution severely skewed to the right. Although logis-
tic regression does not require independent variables to have symmetric distribution, these variables
with skewed distribution tend to explain the response variable better when they are transformed into a
more symmetric distribution. This is because extremely high, abnormal lab values work as influential
points and thus tend to ruin the overall model fit. Also, it is unlikely that having multiple hundred
times the normal lab value really has hundred times the impact that a patient with a normal lab value
would have on a logit of “success” probability.

Log-transformation is simply replacing a variable X with log(X). Due to its simplicity and popu-
larity, a lot of statistical software such as SAS and SPSS includes built-in log-transformation. It is a
special case of the Box-Cox transformation (Box and Cox, 1964) and tends to make rightly skewed
distribution less skewed. The downside of log-transformation is that it can only be applied to positive
variables because logarithm is not defined at zero or negatives.

Although lab values are usually nonnegative, often times they have zeros. This is because in many
cases, due to technical restrictions, there is a limit of detection. That is, if the amount of the substance
of interest goes smaller than a certain value, it is not detected and is recorded as zero. Therefore, to
log-transform a lab value, it is wise to check if there are zeros, and if so, preprocessing to handle zeros
is necessary before log-transformation.

The most commonly used method to handle zeros before log-transformation is the so called
“started logarithm” (Rocke and Durbin-Johnson, 2003). This method is adding a small positive con-
stant before log-transformation. That is, replacing X with log(X + ¢), where c is a very small, positive
constant. For c, 1, or half of the minimum non-zero values, or arbitrary numbers such as 0.01 or 0.001
are often used. There have been studies on how to select optimal value for c¢ in the literature (Ekwaru
and Veugelers, 2018; Rocke and Durbin-Johnson, 2001, 2003; Durbin and Rocke, 2004). Also, there
have been suggestions for new methods of zero imputation as well, but it is challenging to use such
methods in practice due to their complexity (Bellégo et al., 2006).

Park (2023) introduced five zero imputation methods commonly used in practice including “started
logarithm” and compared their performances in linear regression setting. However, the impact of use
of these methods in logistic regression remains unclear.

In this study, we investigate the effect of zero imputation methods for log-transformation of in-
dependent variables in logistic regression setting using a simulation study. The rest of this paper is
organized as follows: In Chapter 2, we introduce the logistic regression setting with a right-skewed
independent variable. In Chapter 3, the five most common zero imputation methods used in medical
science are introduced. Chapter 4 presents the details and the results of the simulation study, and we
conclude with recommendations for zero imputation methods in Chapter 5.

2. Problem setting

We are interested in the situation where the logistic regression model (2.1) explains the relationship
between the binary response variable and the continuous, nonnegative independent variable as,

1

PO = ) = oot + Ar log T

@2.1)

The model above reflects the common situation where X has right-skewed distribution and it
explains P(Y = 1) better when X is log-transformed. We assume that log(X) has normal distribution
(thus X follows log-normal distribution which is skewed to the right) and we cannot observe the exact
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value of X if X < d, where d is the limit of detection and its value is unknown. That is, we observe
the realization of X instead of X, where

B {o, if X<d

X, otherwise.

Setting up X this way, we are reflecting the nature of lab values which have skewed distribution and
have zeros due to limit of detection.

Let %y,...,%, and yi,...,y, be the observed values of Xand Yina sample with size n. Using
these observations one would try to fit the model in the following:

1
1 + exp[—{Bo + B1 log(x)}]’

Py;=1)= =1,...,n (2.2)

However, log(%;) cannot be computed for %; = 0. Therefore, we need to use transformation z; = f(%;)
to replace log(%;) in (2.2). Here, f(X;) needs to be close to log(%;) and should be defined at zero.

3. Zero imputation methods

We consider five different choices for z; = f(X;) to replace log(%;) in model equation (2.2) as follows:

3.1. Shift by one

This method adds one to the whole observations, and then takes the logarithm. This can be written as
follows:

zi=log(x%+1) for i=1,...,n

The rationale behind this method is that it transforms zero to zero. That is, z; becomes zero when
X; = 0. This method only involves arithmetic operations and does not require conditional statements,
which makes the use of this method simple and easy. The downside of this method is that when X is
distributed too closely to 1, the impact of shifting by one can be too big so that z; can be very different
from log(x;). In practice, sometimes any other arbitrary number such as 0.01 or 0.001 is added instead
of 1, but then it does not transform zero to zero anymore and the rationale is lost.

3.2. Shift by half of the smallest nonzero

In this method, half of the minimum value of nonzero observations is added to %; = 0 before log-
transformation. In particular, we use z; as follows:

1
z; = log ii+—min{5cl,...,)”c,l}) for i=1,...,n.
2 %>0

This method is different from the ‘shift by one’ method in the sense that the added constant is deter-
mined based on the distribution of the observed data. Thus using this method prevents z; from becom-
ing too far from log(x;). If we think of mins,-o{%;, ..., %,} as an estimate of d, a?, then this method is
equivalent to shifting all the observations by arithmetic mean of zero and d before log-transformation.
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Table 1: Distribution of the independent variable X

Scenario 1,4 2,5 3,6
Distribution of X Lognormal(0, 1%) Lognormal(3, 1%) Lognormal(3, 3%)
Mean 1.65 33.12 1808.04
Median 1.00 20.09 20.09
1 percentile 0.10 1.96 0.02
3 percentile 0.15 3.06 0.07
5 percentile 0.19 3.88 0.14

10 percentile 0.28 5.58 0.43
99.5 percentile 13.14 263.97 45592.02

3.3. Shift by the square root of the smallest nonzero

We can consider adding the square root of mingo{%i, ..., %,} instead of halving it, as follows:

zizlog(fc,-+ /min{)“cl,...,)?,,}) for i=1,...,n.
x>0

Here, we can think of \/min %>01%1, ..., %,} as the geometric mean of one and d. When min >0l %1, ..., X}
< 4, this method adds a slightly bigger constant to the observed values than ‘shift by half of the small-
est nonzero’ method, but otherwise it adds a smaller constant resulting in z; being closer to log(x;).

3.4. Replace zeros with half of the smallest nonzero

This method keeps nonzero observations the same and only replaces zeros with a half of the minimum
of nonzero observations. That is, we use transformation as follows:

1
log(—min{fcl,...,fcn}), if X,=0

zi = %>0 for i=1,...,n.

log (%)), if % >0

For positive observations, this method does not change anything before log-transformation, resulting
in z; being pretty close to log(x;) overall. However, it requires a conditional statement in the analysis
and this can be challenging in some software.

3.5. Replace zeros with the square root of the smallest nonzero

Similar to the previous method, this method only replaces zeros with a positive constant and keeps
nonzeros as they are. The difference is that the square root of the minimum of nonzero observations is
used as the positive constant rather than half of the smallest nonzero. This can be written as follows:

log( min{fcl,...,fcn}), if X, =0

Zi = >0 fori=1,...,n.

IOg(ii), if ;>0

When the minimum of nonzero observations is less than 1, \/min;i>0{)~c1, «eoy X} > mingso{%y, ...,
Xn} holds. This means that zeros can be replaced by a constant that is greater than the minimum of
nonzero observations, so that the order of the observations may not be preserved.
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Bias of intercept term (Pr(Y=1|X=E(X))=0.5)

log(X) ~ N(0, 1) log(X) ~ N(3, 1) log(X) ~ N(3, 3)
00— g—o—a—a 0.0- 0.0-
S ———9
& -05- .\.\.\. g -05- 3 & _05- '\o\.\;
<€ _10- <€ _10- <€ _19-
15- ~15- 15-
1% 3% 5% 10% 1% 3% 5% 10% 1% 3% 5% 10%
percentage of zeros percentage of zeros percentage of zeros
Method
Shift by 1

+ Shift by (1/2)*(smallest nonzero)
+ Shift by sgrt(smallest nonzero)
—+— Replace zeros with (1/2)*(smallest nonzero)

Replace zeros with sgrt(smallest nonzero)

Figure 1: Bias of intercept term 3y averaged in 1,000 simulated datasets (Scenario 1, 2, and 3).

Bias of slope (Pr(Y=1|X=E(X))=0.5)
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Figure 2: Bias of slope | averaged in 1,000 simulated datasets (Scenario 1, 2, and 3). Refer to Figure 1 for
legend.

4. Simulation study

To evaluate the performance of the five zero imputation methods outlined in the previous chapter,
we carried out a simulation study and report the results here. Here, we outline the steps to generate
simulated data. First, to simulate a continuous, right-skewed independent variable, we generated ran-
dom numbers that follow a log-normal distribution. We considered three different kinds of log-normal
distribution: Lognormal(0, 1), Lognormal(3, 1?), Lognormal(3, 3%), which are similar to the distribu-
tions of commonly used lab values CEA (carcinoembryonic antigen), CRP, and CA19-9, respectively.
To help grasp the overall distribution, mean, median, 1, 3, 5, 10, and 99.5 percentile of X is listed in
Table 1.

Second, the lowest 1, 3, 5, or 10% of the generated values were replaced by zero to reflect the
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Figure 3: Bias of OR (exp(B;)) averaged in 1,000 simulated datasets (Scenario 1, 2, and 3). Refer to Figure 1 for
legend.

Calibration in the large (Pr(Y=1|X=E(X))=0.5)
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Figure 4: Calibration in the large averaged in 1,000 simulated datasets (Scenario 1, 2, and 3). Refer to Figure 1
for legend.

measurement error due to limit of detection.

Third, the values of the response variable were generated from the Bernoulii distribution with
the success probability calculated by equation (2.2) based on the simulated data of the independent
variable. We set 8| = 1 for all scenarios. For 8y, we set the values such that the “success” probability
becomes 0.5 or 0.2 when X = E(X). That is, we simulated data for two types of outcome distribution:
P(Y = 11X = E(X)) = 0.5 and P(Y = 1|X = E(X)) = 0.2. The first type represents the case where the
distribution of the binary response variable is balanced, and the second type shows the case where the
response variable has an unbalanced distribution.

In summary, we considered 6 different scenarios. Scenario 1, 2, and 3 are for the cases where
P(Y = 1|X = E(X)) = 0.5 and Scenario 4, 5, and 6 are for the cases where P(Y = 1|X = E(X)) = 0.2.
In Scenario 1 and 4, the independent variable X follows Lognormal(0, 12). Scenario 2 and 5 have
Lognormal(3, 1), and Scenario 3 and 6 have Lognormal(3, 3%) for the distribution of X.

We generated 1000 sets of samples, each with a sample size of 200. We repeated the same exper-
iment with sample size of 100 and 300, and the results were similar, but are not reported here. For
measure of performance, we calculated bias of MLE estimates of Sy, 8, and exp(;) which is the OR
(odds ratio) of X. We also generated a separate test set with a size of 1000 for each scenario so that we
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Figure 5: Calibration slope averaged in 1,000 simulated datasets (Scenario 1, 2, and 3). Refer to Figure 1 for
legend.

could evaluate the prediction performance of the resulting logistic regression model. The c-index of
the model was calculated and reported. In addition, we calculated calibration in the large and calibra-
tion slope based on the test set so that we can understand the effect of the zero imputation method on
calibration of the resulting logistic regression model. Calibration means the agreement between the
observed outcomes and the predicted response. In the logistic regression context, calibration in the
large stands for the mean difference between estimated vs. actual logit of the success probability, and
the calibration slope refers to the slope of the recalibration model: Logit(p) = « + 8 - logit(p) where
p = Pr(Y = 1]X) (Steyerberg, 2019). If the fitted model has perfect calibration, the calibration in the
large would be 0 and the calibration slope would be 1. The performance measures were calculated for
each of the 1000 simulated data sets, and we report their mean and standard deviation in Tables 2—7
and Figures 1-10.

First, let’s take a look at the scenario 1 to 3 where the response variable has balanced distribution.
Figure 1 shows that the bias in the intercept term tends to be negative. This is because, all five
zero imputation methods tend to make the value of independent variable greater than or equal to
the originally observed value. That is, z; > log(X;) holds for all cases except for rare cases where
mingo{Xi,..., %} < \/min;@o{fq, ..., X%y} < z; < 1 holds and ‘replace zeros with square root of the
smallest nonzero’ method is used. Hence, By +3z; would be greater than By + 31 log(x;) for most cases
when 81 > 0. To compensate the increase in the value of 8y + §;X in the logistic regression model,
the estimate of 3, tends to become lower than By. Bias of f3 is the greatest (in terms of absolute
value) when the ‘shift by 1’ method was used in scenario 1 because using this method in scenario 1
the difference between the observed value log(%;) and the imputed value z; is the greatest.

Bias in the slope is presented in Figure 2. With all five zero imputation methods, the range of z;’s
becomes narrower than that of the original observations log(x;)’s. Therefore, Bl tends to be greater
than 8; to make By + fB1z; cover the range of By + S log(x;), which is why the bias of 5| tends to
be positive. Shrinkage in the range is the greatest in scenario 1 using ‘shift by 1’ method, which is
reflected in the magnitude of the bias of 3;. Bias in the OR is directly related with bias in the slope
because OR = exp(f;) holds. Figure 3 shows that the bias of OR can be quite dramatic because of
exponentiation.

The c-indices in the training set and testing set were almost the same for all five methods because
the different zero imputation methods do not change the order of observations of the independent
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Figure 6: Bias of intercept term 3 averaged in 1,000 simulated datasets (Scenario 4, 5, and 6). Refer to Figure
1 for legend.

variable most of the time.

Figure 4 shows calibration in the large is all positive, which means that the success probability
is underestimated overall using z;. Figure 5 shows that the calibration slopes are less than 1, which
implies that the estimated success probabilities are too extreme, that is, they are close to either zero or
one. This seems to be due to the fact that the bias of ,él is positive. That is, because S, is overestimated,
effect of independent variable is exaggerated.

Now, we consider the results of scenario 4 to 6, where the response variable has an unbalanced
distribution. From Figures 6, 7, and 8, we can see similar patterns to those in scenario 1 to 3, where
the bias of the intercept term tends to be negative and the bias of the slope is more likely to be positive.

Figure 9 shows calibration in the large is all positive, which is also similar to scenario 1 to 3,
except that the magnitude of calibration in the large is much bigger in scenario 4. The calibration
slope was less than 1 in scenario 5 and 6, but tends to be greater than 1 in scenario 4. These results
imply that when the success probability is low and the range of the independent variable is narrow,
the success probability tends to be greatly underestimated and the effect of the independent variable is
also underestimated. Overall, shift by 1 method remains to be the worst method, similarly to scenario
1to 3.

5. Conclusion

We investigated the impact of zero imputation methods for nonnegative independent variables with
skewed distribution in logistic regression. We evaluated and compared the performance of five zero
imputation methods commonly used in clinical research using a simulation study. Overall, bias in the
estimated coefficients tends to be high when the range of independent variable is narrow, especially
with the ‘shift by 1’ method. Bias can be dramatically high in OR estimate and thus, caution is nec-
essary when selecting zero imputation method especially when the range of the observed values of
independent variable is rather narrow. The effect of the zero imputation method in the discrimination
of the resulting logistic regression model is minimal, but calibration suffers somehow, although there
is not so much of a difference among the zero imputation methods. Overall, it is recommended to
avoid the shift by 1 method because it can yield too high a bias in the parameter estimation despite
its ease of use. Shift by half of the smallest nonzero, replace zeros with half of the smallest nonzero,
and replace zeros with the square root of the smallest nonzero methods showed comparable and stable
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Figure 7: Bias of slope | averaged in 1,000 simulated datasets (Scenario 4, 5, and 6). Refer to Figure 1 for
legend.

Bias of OR (Pr(Y=1|X=E(X))=0.2)
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Figure 8: Bias of OR (exp(B)) averaged in 1,000 simulated datasets (Scenario 4, 5, and 6). Refer to Figure 1 for
legend.

performance. In the future, investigation of the effect of the zero imputation methods in the Cox pro-
portional hazards model, which is another frequently used method in clinical research, is warranted.
Another possible research subject includes investigation of the effect of the zero imputation methods
on agreement studies, where a new technique to measure a quantity is compared to the gold standard.
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for legend.
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