Cryptosystems have received very much attention in recent years as importance of information security is increased. Most of Cryptosystems are defined over finite or Galois fields GF($2^m$) . In particular, the finite field GF($2^m$) is mainly used in public-key cryptosystems. These cryptosystems are constructed over finite field arithmetics, such as addition, subtraction, multiplication, and multiplicative inversion defined over GF($2^m$) . Hence, to implement these cryptosystems efficiently, it is important to carry out these operations defined over GF($2^m$) fast. Among these operations, since multiplicative inversion is much more time-consuming than other operations, it has become the object of lots of investigation. Recently, many methods for computing multiplicative inverses at hi호 speed has been proposed. These methods are based on format's theorem, and reduce the number of required multiplication using normal bases over GF($2^m$) . The method proposed by Itoh and Tsujii[2] among these methods reduced the required number of times of multiplication to O( log m) Also, some methods which improved the Itoh and Tsujii's method were proposed, but these methods have some problems such as complicated decomposition processes. In practical applications, m is frequently selected as a power of 2. In this parer, we propose a fast method for computing multiplicative inverses in GF($2^m$) , where m = ($2^n$) . Our method requires fewer ultiplications than the Itoh and Tsujii's method, and the decomposition process is simpler than other proposed methods.
$GF(2^{m})$ 상의 공개키 암호 시스템에서 나눗셈/역원은 기본이 되는 연산으로 내부적으로 $AB^{2}$ 연산을 반복적으로 수행함으로써 계산이 된다. 본 논문에서는 유한 필드 $GF(2^{m})$상에서 $AB^{2}$ 연산을 수행하는 디지트 시리얼(digit-serial) 시스톨릭 구조를 제안하였다. L(디지트 크기)×L 크기의 디지트 시리얼 구조로 유도하기 위하여 새로운 $AB^{2}$ 알고리즘을 제안하고, 그 알고리즘에서 유도된 구조의 각 셀을 분리, 인덱스 변환시킨 후 병합하는 방법을 사용하였다. 제안된 구조는 공간-시간 복잡도를 비교할 때, 디지트 크기가 m보다 적을 때 비트 패러럴 구조에 비해 효율적이고, $(1/5)log_{2}(m+1)$ 보다 적을 때 비트 시리얼(bit-serial) 구조에 비해 효율적이다. 또한, 제안된 디지트 시리얼 구조에 파이프라인 기법을 적용하면 그렇지 않은 구조에 비해 m=160, L=8 일 때 공간-시간 복잡도가 $10.9\%$ 적다. 제안된 구조는 암호 프로세서 칩 디자인의 기본 구조로 이용될 수 있고, 또한 단순성, 규칙성과 병렬성으로 인해 VLSI 구현에 적합하다.
본 논문에서는 m차 기약 AOP를 적용하여 시스템 복잡도를 개선한 GF(2/sup m/)상의 새로운 AB²+C 연산기법과 그 하드웨어 구현회로를 제안하였다. 제안된 회로는 병렬 입출력 구조를 가지며, CS, PP 및 MS를 모듈로 하여 구성되며 이들은 각각 AND와 XOR 게이트의 규칙적인 배열구조를 갖는다. 제안된 회로의 시스템 복잡도는 (m+1)²개의 2-입력 AND게이트와 (m+1)(m+2)개의 2-입력 XOR게이트의 회로복잡도와 연산에 소요되는 최대 지연시간은 T/sub A/sup +/(1+「log₂/sup m/」)T/sub x/ 이다. 제안된 연산기의 시스템 복잡도와 구성상의 특징을 타 연산기를 표로 비교하였고, 그 결과 상대적으로 우수함을 보였다. 또한, 단순하면서도 정규화된 소자 및 결선의 구조는 VLSI 구현에 적합하다.
Diffie-Hellman 키분배 시스템과 타원곡선 암호시스템과 같은 공개키 기반 암호시스템은 GF(2$^{m}$ ) 상에서 정의된 연산, 즉 덧셈, 뺄셈, 곱셈 및 곱셈 역원 연산을 기반으로 구축되며, 이들 암호시스템을 효율적으로 구현하기 위해서는 위 연산들을 고속으로 계산하는 것이 중요하다. 그 중에서 곱셈 역원이 가장 time-consuming하여 많은 연구 대상이 되고 있다. Format 정리에 의해$\beta$$\in$GF(2$^{m}$ )의 곱셈 역원 $\beta$$^{-1}$은 $\beta$$^{-1}$=$\beta$$^{2}$sup m/-2/이므로 GF(2$^{m}$ )의 임의의 원소에 대해 곱셈 역원을 고속으로 계산하기 위해서는, 2$^{m}$ -2을 효율적으로 분해하여 곱셈 횟수를 감소시키는 것이 가장 중요하며, 이와 관련된 알고리즘들이 많이 제안되어 왔다 이 중 Itoh와 Tsujii가 제안한 알고리즘[2]은 정규기저를 사용해서 필요한 곱셈 횟수를 O(log m)까지 감소시켰으며, 또한 이 알고리즘을 향상시킨 몇몇 알고리즘들이 제안되었지만, 분해과정이 복잡하다는 등의 단점이 있다[3,5]. 본 논문에서는 실제 어플리케이션에서 주로 많이 사용되는 m=2$^{n}$ 인 경우에, 인수분해 공식 x$^3$-y$^3$=(x-y)(x$^2$+xy+y$^2$)와 정규기저론 이용해서 곱셈 역원을 고속으로 계산하는 알고리즘을 제안한다. 본 논문의 알고리즘은 곱셈 횟수가 Itoh와 Tsujii가 제안한 알고리즘 보다 적으며, 2$^{m}$ -2의 분해가 기존의 알고리즘 보다 간단하다.
본 논문에서는 확장 유클리드 알고리즘을 이용하여 VLSI 구현에 적합한 GF(2/sup m/)에서의 나눗셈 알고리즘을 제안하였다. 제안하는 나눗셈 알고리즘은 GF(2/sup m/)에서 2m-2번의 반복적인 비트 연산을 필요로 하며 입력 데이터에 의존적인 하드웨어 구조를 새로운 (m+1)-bit의 유한체 G와 H를 도입하여 간단하게 제어하도록 구현하였다. 본 논문에서 제안하는 알고리즘은 유한체 곱셈과 나눗셈이 요구되는 Error Correction Code와 암호 알고리즘에 효율적으로 적용이 가능하다. 현재 대표적으로 사용되는 기존 나눗셈 알고리즘과 비교해 볼 때 연산 시간은 비슷하지만 2-bit의 제어신호만을 필요로 하기 때문에 입력 데이터에 독립적인 O(1)의 complexity를 가짐으로 O(log₂(m+1))의 컨트롤을 갖는 다른 두 알고리즘에 비해 하드웨어 리소스 면에서 월등한 결과를 보인다.
유한체 $GF(2^m)$의 원소를 표현하기 위한 기저선택은 곱셈기의 효율성에 영향을 미친다. 이중에서 여분표현을 이용한 곱셈기는 모듈러 감산을 빠르게 구성할 수 있는 특징을 이용하여 시간-공간의 trade-off를 효율적으로 제공한다. 따라서 여분표현을 이용한 기존의 곱셈기는 다른 기저로 표현한 곱셈기보다 시간 복잡도 상의 효율성을 제공하나 공간 복잡도가 많이 늘어나는 단점을 가진다. 본 논문에서는 다항식 지수승 연산이 많이 사용된다는 것을 감안해 Left-to-Right 형태의 지수승 환경에 적합한 시간-공간 복잡도 상의 효율성을 가지는 새로운 비트-병렬 곱셈기를 제안한다. 제안하는 곱셈기는 $T_A+({\lceil}{\log}_2m{\rceil})T_x$ 시간 복잡도와 (2m-1)(m+s) 공간 복잡도를 요구하며 ESP(Equally Spaced Polynomial) 기약다항식 기반의 기존 여분표현 곱셈기와 비교해 공간 복잡도는 $2(ms+s^2)$ 감소하며, 시간복잡도는 $T_A+({\lceil}{\log}_2(m+s){\rceil})T_x$에서 $T_A+({\lceil}{\log}_2m{\rceil})T_x$로 감소된다. ($T_A$:2개의 입력에 1개의 출력인 AND 게이트 시간, $T_x$:2개의 입력에 1개의 출력인 XOR 게이트 시간이며 m:ESP기약 다항식 차수, s: ESP기약 다항식의 각항의 차수 간격)
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4788-4813
/
2019
In this paper, we introduce concepts of optimal and near optimal secret data hiding schemes. We present a new digital image steganography approach based on the Galois field $GF(p^m)$ using graph and automata to design the data hiding scheme of the general form ($k,N,{\lfloor}{\log}_2p^{mn}{\rfloor}$) for binary, gray and palette images with the given assumptions, where k, m, n, N are positive integers and p is prime, show the sufficient conditions for the existence and prove the existence of some optimal and near optimal secret data hiding schemes. These results are derived from the concept of the maximal secret data ratio of embedded bits, the module approach and the fastest optimal parity assignment method proposed by Huy et al. in 2011 and 2013. An application of the schemes to the process of hiding a finite sequence of secret data in an image is also considered. Security analyses and experimental results confirm that our approach can create steganographic schemes which achieve high efficiency in embedding capacity, visual quality, speed as well as security, which are key properties of steganography.
지수승(exponentiation) 연산은 암호 관련 응용에서 널리 사용되고 있으며, 안전성을 위해 지수 n의 값을 크게 선정하여 이용하고 있다. 그런데, n의 값이 커짐에 따라 수행해야 하는 곱셈의 횟수도 따라서 증가하게 되고, 결과적으로 속도가 빠른 연산 알고리즘의 개발이 중요한 문제로 대두되고 있다. 본 논문에서는 정규 기저 표현(normal bases representation)을 갖는 GF(2$^n$) 상의 병렬 지수승 연산에 있어서, 프로세서 수가 고정된 경우에 라운드 수를 개선할 수 있는 알고리즘을 제안하고 이의 성능분석을 수행한다. 제안하는 방안은 지수(exponent)를 특정 비트 수로 나누어 지수승을 수행하는 윈도우 방법(window method)를 이용하는 것으로, 윈도우 값 계산 단계에서 휴지 프로세서들로 하여금 윈도우들 간의 곰을 계산하도록 합으로써, 전체 라운드 수를 줄이는 효과를 갖는다.
유한체 GF($2^n$) 연산을 바탕으로 구성되는 암호시스템에서 유한체 곱셈의 효율적인 하드웨어 설계는 매우 중요한 연구분야이다. 본 논문에서는 공간 복잡도가 낮은 병렬 처리 유한체 곱셈기를 구성하기 위하여 삼항 기약다항식(Trinomial) $f(x)=x^n+x^k+1$의 모듈러 감산 연산 특징을 이용하였다. 또한 연산 수행 속도를 빠르게 개선하기 위해 하드웨어 구조를 기존의 Mastrovito 곱셈 방법과 유사하게 구성한다. 제안하는 곱셈기는 $n^2-k^2$ 개의 AND 게이트와 $n^2-k^2+2k-2$개의 XOR 게이트로 구성되므로 이는 기존의 $n^2$ AND게이트, $n^2-1$ XOR 게이트의 합 $2n^2-1$에서 $2k^2-2k+1$ 만큼의 공간 복잡도가 감소된 결과이다. 시간 복잡도는 기존의 $T_A+(1+{\lceil}{\log}_2(2n-k-1){\rceil})T_X$와 같거나 $1T_X$ 큰 값을 갖는다. 최고차 항이 100에서 1000 사이의 모든 기약다항식에 대해 시간복잡도는 같거나 $1T_X(10%{\sim}12.5%$)정도 증가하는데 비해 공간 복잡도는 최대 25% 까지 감소한다.
In this paper, the fabric specimen undergoes repeated laundering under given condition. After this cyclic laundering was applied, the crease recoveries of the specimen were measured using shirley crease revovery tester in order to evaluate the effect of factors at given condition during crease deformation. 5 samples of grey plain cloth were desized, alkali-scoured, bleached, whased with water, and air-dried. All tests were made on samples preconditioned to $65\%\;RH\;and\;20^{\circ}C$. The experimental results were analysed statistically to relate crease recoveries and the properties of smaples, recovery periods (time) of crease. Furthermore, the crease recoveries of core-spun yarn woven fabrics were discussed in comparison with those values for $100\%$ combed cotton yarn woven fabric and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric. The results obtained are as follows; 1. Regardless of materials, remarkable decrease are observed in crease recoveries about 1-5 cycles of the repeated laundering, but slack decrease are observed in crease recoveries after 5 cycle of the re-peated laundering. 2. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to recovery periods (t) of crease as follows; log$\alpha$=0.01415 log t+2.1168 ($r^2=0.94$) 3. Core-spun yarn woven fabrics were superior to $100\%$ combed cotton yarn woven fabrics and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric in crease recoveries. 4. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to cover factor (CF), thickness (T) at pressure 0.5 $gf/cm^2$, weight (W) as follows; log$\alpha$=-0.3482 log CF-0.4924 log T-0.4727 W+2.4243 ($r^2=0.88$) 5. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, WC/T which are concerning to formation of weared clothes and bending Iran formation behavior as follows: log $\alpha$=0.0091 2HB/B+0.4667 2HB/W+0.0185 $\sqrt[3]{B/W}$+0.0114 WC/T+1.8433 ($r^2=0.86$)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.