• 제목/요약/키워드: locally integrable functions

검색결과 5건 처리시간 0.018초

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

  • Chung, Jae-Young
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.73-84
    • /
    • 2011
  • Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

  • Garimella, Ramesh V.
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.737-746
    • /
    • 1999
  • For a locally compact Abelian group G, and a commutative Banach algebra B, let $L^1$(G, B) be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is cnotained in a regular maximal ideal, then $L^1$(G, B) contains no nontrivial separating idal. As a consequence we deduce some automatic continuity results for $L^1$(G, B).

  • PDF

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM

  • Chung, Jaeyoung
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1157-1169
    • /
    • 2016
  • We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.

Lebesgue-Stieltjes Measures and Differentiation of Measures

  • Jeon, Won-Kee
    • 호남수학학술지
    • /
    • 제8권1호
    • /
    • pp.51-74
    • /
    • 1986
  • The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

  • PDF