• 제목/요약/키워드: localized corrosion

검색결과 135건 처리시간 0.023초

Localized Corrosion of Zn-Plated Carbon Steel Used as a Fire Sprinkler Pipe

  • Lee, Jin Hee;Lee, You-Kee;Lee, Kyu Hwan;Kim, Dong-Kyu;Lee, Sung Gun;Lee, Sang Hwa;Kim, Insoo
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.148-152
    • /
    • 2009
  • The failure of a Zn-plated carbon steel pipe that served as a fire sprinkler was investigated in terms of the pipe's corrosion products. The pipes leaked through holes formed beneath the tubercles. The formation of oxygen concentration cell involves colonization of metal surface by aerobic bacteria or other slime formers, and anodic reaction beneath tubercle is accelerated by the presence of SRB, leading to the formation of hole beneath tubercle.

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

Application of Neural Networks in Aluminum Corrosion

  • Powers, John;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.157-172
    • /
    • 2000
  • Metal containers represent a situation where a specific metal is exposed to a wide variety of electrolytes of varying degrees of corrosivity. For example, hundreds, if not thousands of different products are packaged in an aluminum beverage can. These products vary in pH, chloride concentration and other natural or artificial ingredients which can effect the type and severity of potential corrosion. Both localized (perforation) and uniform corrosion (metal dissolution without the onset of pitting) may occur in the can. A quick test or series of tests which could predict the propensity towards both types of corrosion would be useful to the manufacturer. Electrochemical noise data is used to detect the onset and continuation of pitting corrosion. Specific noise parameters such as the noise resistance (the potential noise divided by the current noise) have been used to both detect pitting corrosion and also to estimate the pitting severity. The utility of noise resistance and other electrochemical parameters has been explored through the application of artificial neural networks. The versatility of artificial neural networks is further demonstrated by combing electrochemical data with electrolyte properties such as pH and chloride concentration to predict both the severity of both localized and uniform corrosion.

  • PDF

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.

불소 첨가/미첨가 인공타액 용액에서 연마 및 마스킹 조건이 적층제조 Ti-6Al-4V 합금의 동전위분극시험 결과에 미치는 영향 (Effects of Grinding and Masking Conditions on the Potentiodynamic Polarization Curves of Additively Manufactured Ti-6Al-4V Alloy in Artificial Saliva Solution with or Without Fluoride Ions)

  • 안경빈;장희진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.475-483
    • /
    • 2021
  • Additively manufactured titanium alloy is one of the promising materials in advanced medical industries. However, these additively manufactured alloys show corrosion properties different from those of conventional materials due to their unique microstructure. In this study, the effect of surface roughness and masking conditions on the results of the potentiodynamic polarization tests on additively manufactured or conventional Ti-6Al-4V alloys in artificial saliva solution with or without fluoride was investigated. The results showed that the corrosion potential was slightly lower with a flat cell with an O-ring than with masking tape. The corrosion rate was decreased with decreases in the surface roughness. Localized corrosion involving delamination of the surface layer occurred at 7 ~ 9 V (SSC) on the additively manufactured alloy in solution with or without fluoride when the samples were finished with 1000-grit SiC paper, whereas localized corrosion was not observed in the specimens finished with 1-㎛ alumina paste.

High Nitrogen-Bearing Austenitic Stainless Steels Resistant to Marine Corrosion

  • Kodama, Toshiaki;Katada, Yasuyuki;Baba, Haruo;Sagara, Masayuki
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.272-276
    • /
    • 2003
  • High nitrogen-bearing stainless steel (HNS) containing more than Imass% N was successfully created by means of pressurized electro-slag remelting (P-ESR) without the addition of manganese. Excellent localized corrosion resistant properties of the HNS were confirmed in terms of pitting and crevice corrosion in artificial seawater. The repassivation kinetics proved higher repassivation rate for HNS.

혐기성 토양에 서식하는 황산염환원세균에 의한 가스배관의 미생물부식 (CORROSION OF STEEL GAS PIPELINE INDUCED BY SULFATE-REDUCING BACTERIA IN ANAEROBIC SOIL)

  • 이선엽;전경수;고영태;강탁
    • 한국가스학회:학술대회논문집
    • /
    • 한국가스학회 2001년도 추계학술발표회 논문집
    • /
    • pp.58-68
    • /
    • 2001
  • Microbiologically influenced corrosion (MIC) of carbon steel gas pipeline in soil environments was investigated at field and laboratory MIC is very severe corrosion and it is not easy to distinguish this corrosion from Inorganic corrosion because of its localized, pitting-type character Therefore, it is important to provide proper assessment techniques for the prediction, detection, monitoring and mitigation of MIC. It is possible to predict the MIC risk, i.e., the activity of sulfate-reducing bacteria (SRB) through the analysis of soil environments. Chemical, microbiological and surface analysis of corrosion products and metal attacked could reveal the possibility of the occurrence of MIC. Various electrochemical and surface analysis techniques could be used for the study of MIC. Among these techniques, thin-film electrical resistance (ER) type sensors are promising to obtain localized corrosion rate of MIC induced by SRB. It is also important to study the effect of cathodic protection (CP) on the MIC In case of coated pipeline, the relationship between coating disbondment and the activity of SRB beneath the disbanded coating is also important.

  • PDF

Study of Chloride Corrosion Organic Inhibitors in Alkaline Pore Solution

  • Cabrini, M.;Lorenzi, S.;Pastore, T.;Pellegrini, S.
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.203-210
    • /
    • 2018
  • This paper compares the inhibition properties of aspartic and lactic acid salts with nitrite ions and their effect on critical chloride concentration. The tests were carried employing carbon steel specimens in saturated lime solution with varying pH in the range between13 to 13.6. The critical chloride concentration was estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in the alkaline concrete of atmospheric structures. During tests, chloride salt was added every 48 h until all the specimens showed localized attacks. The cumulative distribution curves, i.e. the number of corroded specimens as a function of the chlorides concentration was obtained. Furthermore, IR spectra were recorded for the evaluation of the presence of the organic inhibitors on the passivity film. The results confirmed the inhibitory effect of 0.1M aspartate comparable with nitrite ions, at a similar concentration. Addition of calcium lactate did not result in an increase in the critical chloride concentration. However, the formation of a massive scale containing the substance that could reduce the corrosion propagation was observed.

Localized Corrosion Resistance and Microstructural Changes in UNS N07718 Alloy After Solution Heat Treatment

  • Yoon-Hwa Lee;Jun-Seob Lee;Soon il Kwon;Jungho Shin;Je-Hyun Lee
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.166-178
    • /
    • 2024
  • The localized corrosion resistance of UNS N07718 alloy was investigated after solution heat treatment. When the alloy was heat-treated at 1050 ℃ for 2.5 hours, it experienced an increase in average grain diameter, a reduction in grain boundary area, and the dissolution of delta phases along grain boundaries. Additionally, primary metallic nitrides (MN) and metallic carbides (MC), enriched with either Ti or Nb, were identified and exhibited a random distribution within the microstructures. Despite the solution heat treatment, the composition, diameter, and abundance of MNs and MCs remained relatively consistent. The critical pitting temperature (CPT), as determined by the ASTM G48-C immersion test, revealed similar values of 45 ℃ for both treated and untreated alloys. However, a decrease in maximum pit depth and corrosion rate was observed after the solution heat treatment. The microstructural changes that occurred during the heat treatment and their potential implications were discussed to understand the influence of the solution heat treatment.

Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향 (Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.