• 제목/요약/키워드: local vibration

검색결과 507건 처리시간 0.026초

거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법 (A study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method)

  • 황문주;박석주;이기문
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.364-369
    • /
    • 1997
  • It is very difficult to execute the vibration analysis of a huge structure, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.

  • PDF

Damage detection for beam structures based on local flexibility method and macro-strain measurement

  • Hsu, Ting Yu;Liao, Wen I;Hsiao, Shen Yau
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.393-402
    • /
    • 2017
  • Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply supported beams.

적정 포장설계를 위한 과실의 유통 중 진동의 계측 및 분석 (Vibration Measurement and Analysis During Fruits Distribution for Optimum Packaging Design)

  • 김기석;정현모;김기복;김만수
    • Journal of Biosystems Engineering
    • /
    • 제33권1호
    • /
    • pp.38-44
    • /
    • 2008
  • The freight vehicle is mostly used to transport the fruit. Shock and impact generated by the freight vehicle may give serious damage to fruits hence to reduce the fruits damage, the optimum packaging design during transportation by vehicle is required. In order to design the packaging system for fruit transportation optimally, the comprehension of characteristic for vibration and shock acting on vehicles under various road conditions and loading methods is required. This research was performed to analyze the shock characteristics, acceleration level and power spectral density (PSD) of the fruit transportation vehicles under several travel roads and positions. The vibration signal was measured and analyzed at the transportation vehicle operating on the road of three different surface conditions. The maximum acceleration was measured at the rear-end of the vehicle, and the acceleration in the direction of up-and-down (z-axis) was much greater than those in the directions of back-and-forth (x-axis) or right-and-left (y-axis). The peak acceleration in the direction of up-and-down (z-axis) at the vehicle driving on the expressway, the local road paved with concrete, and unpaved local road were 5.3621 G, 8.232 G, and 14.162 G respectively. PSD at 2.44 Hz showed maximum value at all road conditions. The maximum values of PSD on the expressway, a local road paved with concrete, and unpaved local road were 0.0075222 $G^2/Hz$, 0.058655 $G^2/Hz$, and 0.24598 $G^2/Hz$ respectively. The value of PSD decreased with an increase of the vibration frequency of the transportation vehicle. In most cases, the vibration frequency was below 20 Hz during transportation.

휘담식 진동기 수기요법의 기전에 대한 서술적 고찰 (Narrative Review on the Mechanism of Whidam's Vibrator Sugi Therapy)

  • 안훈모;정대성;강한주
    • 대한의료기공학회지
    • /
    • 제22권1호
    • /
    • pp.1-27
    • /
    • 2023
  • Objective : This paper provides a narrative review of the research literature on the neurophysiological and neurochemical mechanisms of local vibration while studying the treatment principles and mechanisms of Whidam's vibrator Sugi therapy. Methods : Searches related to vibration therapy research were conducted in PUBMED using "Vibration", "Whole Body Vibration", "Localized Vibration", and "Focal Vibration". The Conditions were limited to review and systematic review. Results : Roberto Casale's paper was selected as an inquiry task and reviewed critically and narratively by referring to other papers. The stimulation process of local vibration (LV) was broadly classified into receptor transmission (pain reception phase), ascending sensory pathway to the spinal cord (segmental phase), and action of the cortex and subcortical structures (systemic control phase) according to the pain pathway. In addition, the role of C-tactile mechanoreceptors, changes in neurotransmitters and neurohormones, LV stimulation below perception threshold (lower threshold), pain control and kinesiologic illusions were specially addressed. In addition, the expression and function of Piezo Channels were added to supplement the human pain and tactile sensing mechanism. Conclusions : LV exerts pain control mechanisms through different interactions that can interfere with pain transmission and pain perception. Since LV provides sufficient neurophysiological reasons for clinical application, it is necessary to expand the use of Whidam's vibrator Sugi therapy to a wider range of clinical applications.

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

Analyses of tapered fgm beams with nonlocal theory

  • Pradhan, S.C.;Sarkar, A.
    • Structural Engineering and Mechanics
    • /
    • 제32권6호
    • /
    • pp.811-833
    • /
    • 2009
  • In the present article bending, buckling and vibration analyses of tapered beams using Eringen non-local elasticity theory are being carried out. The associated governing differential equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are considered in the analyses. Present results are in good agreement with those reported in literature. Beam material is considered to be made up of functionally graded materials (fgms). Non-local analyses for tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum deflections, vibration frequencies and critical buckling loads are studied.

Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory

  • Belmahi, Samir;Zidour, Mohammed;Meradjah, Mustapha
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 2019
  • This present article represents the study of the forced vibration of nanobeam of a single-walled carbon nanotube (SWCNTs) surrounded by a polymer matrix. The modeling was done according to the Euler-Bernoulli beam model and with the application of the non-local continuum or elasticity theory. Particulars cases of the local elasticity theory have also been studied for comparison. This model takes into account the different effects of the interaction of the Winkler's type elastic medium with the nanobeam of carbon nanotubes. Then, a study of the influence of the amplitude distribution and the frequency was made by variation of some parameters such as (scale effect ($e_0{^a}$), the dimensional ratio or aspect ratio (L/d), also, bound to the mode number (N) and the effect of the stiffness of elastic medium ($K_w$). The results obtained indicate the dependence of the variation of the amplitude and the frequency with the different parameters of the model, besides they prove the local effect of the stresses.

Bishop theory and longitudinal vibration of nano-beams by two-phase local/nonlocal elasticity

  • Reza Nazemnezhad;Roozbeh Ashrafian;Alireza Mirafzal
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.75-89
    • /
    • 2023
  • In this paper, Bishop theory performs longitudinal vibration analysis of Nano-beams. Its governing equation, due to integrated displacement field and more considered primarily effects compared with other theories, enjoys fully completed status, and more reliable results as well. This article aims to find how Bishop theory and Two-phase elasticity work together. In other words, whether Bishop theory will be compatible with Two-phase local/nonlocal elasticity. Hamilton's principle is employed to derive governing equation of motion, and then the 6th order of Generalized Differential Quadrature Method (GDQM) as a constructive numerical method is utilized to attain the discretized two-phase formulation. To acquire a proper verification procedure, exact solution is prepared to be compared with current results. Furthermore, the effects of key parameters on the objective are investigated.

국소적 진동 적용이 주관절의 위치 감각과 최대악력에 미치는 영향 (Effect of Local Vibration on Elbow Joint in Position Sense and Maximal Grip Force)

  • 허광호;이현민;천송희;방현수;강종호;김진상
    • 대한물리의학회지
    • /
    • 제3권3호
    • /
    • pp.145-149
    • /
    • 2008
  • Purpose : The purpose of this study was evaluate the effects of vibration on joint position sense. Methods : The subjects were divided into vibration group(n=20) and control group(n=20). Vibration group was given local vibration on elbow joint for 15 minutes and control group was given resting 15 minutes by resting position. All subjects of each group were tested pre-post on maximal grip force and joint position sense. Results : Maximal grip force test and joint position sense test of vibration group was showed a significant difference between pre and post(p<0.05). Conclusion : There was a different change on maximal grip force and joint position sense.

  • PDF

Vibration control, energy harvesting and forced vibration of the piezoelectric NEMS via paradox-free local/nonlocal theory

  • Zohre Moradi;Farzad Ebrahimi;Mohsen Davoudi
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.335-353
    • /
    • 2023
  • The possibility of energy harvesting as well as controlled vibration of a three-layered beam consisting of two piezoelectric layer and one core layer made of nonpiezoelectric material is investigated using paradox-free local/nonlocal theory. The three-layered nanobeam is resting on an elastic foundation and subjected to a blast load. Also, the core layer is made of Nano-composites reinforced by CNTs and carbon fibers (MHCD). Governing equations as well as boundary conditions are obtained using Hamilton,s principle. The equations discretized by Generalized Differential Quadrature Method (GDQM) and solved by Newmark beta method. In addition, two differential and integral gains are employed for controlling the forced vibration. The size-dependency of the elastic foundation is considered using two-phase elasticity. The effect of elastic foundation, control gains, nonlocal factor, as well as parameters affecting the core material on the forced vibration and energy harvesting is investigated in detail. The equations as well as solution procedure is validated utilizing some compassion studies. This work can be a basis for future studies on energy harvesting and controlled vibration in small scales.