DOI QR코드

DOI QR Code

휘담식 진동기 수기요법의 기전에 대한 서술적 고찰

Narrative Review on the Mechanism of Whidam's Vibrator Sugi Therapy

  • 투고 : 2023.05.15
  • 심사 : 2023.06.01
  • 발행 : 2023.06.30

초록

Objective : This paper provides a narrative review of the research literature on the neurophysiological and neurochemical mechanisms of local vibration while studying the treatment principles and mechanisms of Whidam's vibrator Sugi therapy. Methods : Searches related to vibration therapy research were conducted in PUBMED using "Vibration", "Whole Body Vibration", "Localized Vibration", and "Focal Vibration". The Conditions were limited to review and systematic review. Results : Roberto Casale's paper was selected as an inquiry task and reviewed critically and narratively by referring to other papers. The stimulation process of local vibration (LV) was broadly classified into receptor transmission (pain reception phase), ascending sensory pathway to the spinal cord (segmental phase), and action of the cortex and subcortical structures (systemic control phase) according to the pain pathway. In addition, the role of C-tactile mechanoreceptors, changes in neurotransmitters and neurohormones, LV stimulation below perception threshold (lower threshold), pain control and kinesiologic illusions were specially addressed. In addition, the expression and function of Piezo Channels were added to supplement the human pain and tactile sensing mechanism. Conclusions : LV exerts pain control mechanisms through different interactions that can interfere with pain transmission and pain perception. Since LV provides sufficient neurophysiological reasons for clinical application, it is necessary to expand the use of Whidam's vibrator Sugi therapy to a wider range of clinical applications.

키워드

참고문헌

  1. Beag JY, Cho MG, Bae JR, Kang HJ, Kim JC, Lee JH, et al. Introduction of Whidam's SuGi therapy - Focused on Cervical spine. Medical Gigong. 2017;17(1):24-51.
  2. Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch. 2022;474(4):405-20. https://doi.org/10.1007/s00424-022-02667-x
  3. Ahn HM, Lee JH, Na SS. A Study on the Angyo Method of Doin Angyo - Whidam's Su-Gi Therapy Based on the Principles of Medical Gigong. Medical Gigong. 2019;19(1):1-24.
  4. Jeong Jh, Pil GM, Na SS. A Case Report of Gait Disturbance due to Acute Low Back Pain Syndrome improved with Whidam's Vibrator Pelvic Sugi Therapy. Medical Gigong. 2022;21(1):1-12.
  5. Lee JH, Beag JY, Chang SJ, Pil GM. An Overview on Vibration or Wave Therapy in Korea. Medical Gigong. 2020;20(1):15-67.
  6. Rauch F. Vibration therapy. Dev Med Child Neurol. 2009;51(Suppl 4):166-8. https://doi.org/10.1111/j.1469-8749.2009.03418.x
  7. Bonanni R, Cariati I, Romagnoli C, D'Arcangelo G, Annino G, Tancredi V. Whole Body Vibration: A Valid Alternative Strategy to Exercise? J Funct Morphol Kinesiol. 2022;7(4).
  8. Murillo N, Valls-Sole J, Vidal J, Opisso E, Medina J, Kumru H. Focal vibration in neurorehabilitation. Eur J Phys Rehabil Med. 2014;50(2):231-42.
  9. Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003;31(1):3-7. https://doi.org/10.1097/00003677-200301000-00002
  10. Casale R, Hansson P. The analgesic effect of localized vibration: a systematic review. Part 1: the neurophysiological basis. Eur J Phys Rehabil Med. 2022;58(2):306-15.
  11. Ha JA, Kang HJ, Hong SC, Park JH, Ahn HM. 전신진동운동기의 진동수에 따른 체열변화. Medical Gigong. 2011;12(1):128-50.
  12. Rhim YT. The Study on Whole Body Vibration as a New Exercise-Training Prescription Method. Journal of coaching development. 2005;7(4):105-16.
  13. Ryu KY, Lee JH, Na SS, Park JU. 無心氣功의 導引法 및 일반공법 소개. Medical GiGong. 2005;8(1):1-52.
  14. Kang HJ, Kim BK, Jang SC, Lee JH. Stretching and NAEGA-walking Training of MOOSIM Gigong. J of Korean Academy of Medical Gi-Gong. 2014;14(1):1-38.
  15. Penasso H, Petersen F, Peternell G. Vascular and Neural Response to Focal Vibration, Sensory Feedback, and Piezo Ion Channel Signaling. Journal of Vascular Diseases. 2023;2(1):42-90. https://doi.org/10.3390/jvd2010006
  16. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55-60. https://doi.org/10.1126/science.1193270
  17. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816-24. https://doi.org/10.1038/39807
  18. Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 2017;18(12):771-83. https://doi.org/10.1038/nrm.2017.92
  19. Moehring F, Halder P, Seal RP, Stucky CL. Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron. 2018;100(2):349-60. https://doi.org/10.1016/j.neuron.2018.10.019
  20. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, et al. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Rep. 2015;13(6):1161-71. https://doi.org/10.1016/j.celrep.2015.09.072
  21. Szczot M, Nickolls AR, Lam RM, Chesler AT. The Form and Function of PIEZO2. Annu Rev Biochem. 2021;90:507-34. https://doi.org/10.1146/annurev-biochem-081720-023244
  22. Wang J, La JH, Hamill OP. PIEZO1 Is Selectively Expressed in Small Diameter Mouse DRG Neurons Distinct From Neurons Strongly Expressing TRPV1. Front Mol Neurosci. 2019;12:178.
  23. Roh J, Hwang SM, Lee SH, Lee K, Kim YH, Park CK. Functional Expression of Piezo1 in Dorsal Root Ganglion (DRG) Neurons. Int J Mol Sci. 2020;21(11).
  24. Nagel M, Chesler AT. PIEZO2 ion channels in proprioception. Curr Opin Neurobiol. 2022;75:102572.
  25. Wu J, Lewis AH, Grandl J. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels. Trends Biochem Sci. 2017;42(1):57-71. https://doi.org/10.1016/j.tibs.2016.09.004
  26. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019;573(7773):230-4. https://doi.org/10.1038/s41586-019-1499-2
  27. Nourse JL, Pathak MM. How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. Semin Cell Dev Biol. 2017;71:3-12. https://doi.org/10.1016/j.semcdb.2017.06.018
  28. Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 2014;111(28):10347-52. https://doi.org/10.1073/pnas.1409233111
  29. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, et al. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515(7526):279-82. https://doi.org/10.1038/nature13701
  30. Lewis AH, Grandl J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. Elife. 2015;4.
  31. Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun. 2014;5:3520.
  32. Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, et al. Piezo1 Channels Are Inherently Mechanosensitive. Cell Rep. 2016;17(7):1739-46. https://doi.org/10.1016/j.celrep.2016.10.033
  33. Qiu Z, Guo J, Kala S, Zhu J, Xian Q, Qiu W, et al. The Mechanosensitive Ion Channel Piezo1 Significantly Mediates In Vitro Ultrasonic Stimulation of Neurons. iScience. 2019;21:448-57. https://doi.org/10.1016/j.isci.2019.10.037
  34. Kim TH, Jeon WY, Ji Y, Park EJ, Yoon DS, Lee NH, et al. Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials. 2021;275:120948.
  35. Huang JQ, Zhang H, Guo XW, Lu Y, Wang SN, Cheng B, et al. Mechanically Activated Calcium Channel PIEZO1 Modulates Radiation-Induced Epithelial-Mesenchymal Transition by Forming a Positive Feedback With TGF-β1. Front Mol Biosci. 2021;8:725275.
  36. Hao L, Li L, Wang P, Wang Z, Shi X, Guo M, et al. Synergistic osteogenesis promoted by magnetically actuated nano-mechanical stimuli. Nanoscale. 2019;11(48):23423-37. https://doi.org/10.1039/C9NR07170A
  37. Kang H, Hong Z, Zhong M, Klomp J, Bayless KJ, Mehta D, et al. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am J Physiol Cell Physiol. 2019;316(1):C92-c103. https://doi.org/10.1152/ajpcell.00346.2018
  38. Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis. 2003;6(1):1-14. https://doi.org/10.1023/A:1025809808697
  39. Gibbons CH. Basics of autonomic nervous system function. Handb Clin Neurol. 2019;160:407-18. https://doi.org/10.1016/B978-0-444-64032-1.00027-8
  40. Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, et al. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol. 2022;13:816149.
  41. Bartel L, Mosabbir A. Possible Mechanisms for the Effects of Sound Vibration on Human Health. Healthcare (Basel). 2021;9(5).
  42. Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature. 2014;516(7529):121-5. https://doi.org/10.1038/nature13980
  43. Szczot M, Liljencrantz J, Ghitani N, Barik A, Lam R, Thompson JH, et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci Transl Med. 2018;10(462).
  44. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126(12):4527-36. https://doi.org/10.1172/JCI87343
  45. von Buchholtz LJ, Ghitani N, Lam RM, Licholai JA, Chesler AT, Ryba NJP. Decoding Cellular Mechanisms for Mechanosensory Discrimination. Neuron. 2021;109(2):285-98.e5. https://doi.org/10.1016/j.neuron.2020.10.028
  46. Case LK, Liljencrantz J, Madian N, Necaise A, Tubbs J, McCall M, et al. Innocuous pressure sensation requires A-type afferents but not functional PIEZO2 channels in humans. Nat Commun. 2021;12(1):657.
  47. Choi SI, Lim JY, Yoo S, Kim H, Hwang SW. Emerging Role of Spinal Cord TRPV1 in Pain Exacerbation. Neural Plast. 2016;2016:5954890.
  48. Yang S, Yang F, Wei N, Hong J, Li B, Luo L, et al. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun. 2015;6:8297.
  49. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6(5):357-72. https://doi.org/10.1038/nrd2280
  50. Woolums BM, McCray BA, Sung H, Tabuchi M, Sullivan JM, Ruppell KT, et al. TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca(2). Nat Commun. 2020;11(1):2679.
  51. Gilchrist CL, Leddy HA, Kaye L, Case ND, Rothenberg KE, Little D, et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc Natl Acad Sci USA. 2019;116(6):1992-7. https://doi.org/10.1073/pnas.1811095116
  52. Phan TX, Ton HT, Gulyas H, Porszasz R, Toth A, Russo R, et al. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure. J Physiol. 2020;598(24):5639-59. https://doi.org/10.1113/JP279909
  53. Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 Channels in Energy Homeostasis. Front Endocrinol (Lausanne). 2018;9:420.
  54. Amantini C, Farfariello V, Cardinali C, Morelli MB, Marinelli O, Nabissi M, et al. The TRPV1 ion channel regulates thymocyte differentiation by modulating autophagy and proteasome activity. Oncotarget. 2017;8(53):90766-80. https://doi.org/10.18632/oncotarget.21798
  55. Li YR, Gupta P. Immune aspects of the bi-directional neuroimmune facilitator TRPV1. Mol Biol Rep. 2019;46(1):1499-510. https://doi.org/10.1007/s11033-018-4560-6
  56. Lee E, Jung DY, Kim JH, Patel PR, Hu X, Lee Y, et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. Faseb j. 2015;29(8):3182-92. https://doi.org/10.1096/fj.14-268300
  57. Mistretta F, Buffi NM, Lughezzani G, Lista G, Larcher A, Fossati N, et al. Bladder cancer and urothelial impairment: the role of TRPV1 as potential drug target. Biomed Res Int. 2014;2014:987149.
  58. Sterle I, Zupancic D, Romih R. Correlation between urothelial differentiation and sensory proteins P2X3, P2X5, TRPV1, and TRPV4 in normal urothelium and papillary carcinoma of human bladder. Biomed Res Int. 2014;2014:805236.
  59. McGarvey LP, Butler CA, Stokesberry S, Polley L, McQuaid S, Abdullah H, et al. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol. 2014;133(3):704-12.e4. https://doi.org/10.1016/j.jaci.2013.09.016
  60. Feng J, Yang P, Mack MR, Dryn D, Luo J, Gong X, et al. Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat Commun. 2017;8(1):980.
  61. Chung YG, Kim J, Han SW, Kim HS, Choi MH, Chung SC, et al. Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: a fMRI study. Brain Res. 2013;1504:47-57. https://doi.org/10.1016/j.brainres.2013.02.003
  62. Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve. 2007;36(1):21-9. https://doi.org/10.1002/mus.20796
  63. Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci. 2021;22(9):521-37. https://doi.org/10.1038/s41583-021-00489-x
  64. Loken LS, Wessberg J, Morrison I, McGlone F, Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci. 2009;12(5):547-8. https://doi.org/10.1038/nn.2312
  65. Nagi SS, Marshall AG, Makdani A, Jarocka E, Liljencrantz J, Ridderstrom M, et al. An ultrafast system for signaling mechanical pain in human skin. Sci Adv. 2019;5(7):eaaw1297.
  66. Hollins M, Roy EA, Crane SA. Vibratory antinociception: effects of vibration amplitude and frequency. J Pain. 2003;4(7):381-91. https://doi.org/10.1016/S1526-5900(03)00714-4
  67. Gescheider GA, Bolanowski SJ, Hardick KR. The frequency selectivity of information-processing channels in the tactile sensory system. Somatosens Mot Res. 2001;18(3):191-201. https://doi.org/10.1080/01421590120072187
  68. Hagbarth K-E. The Effect of Muscle Vibration in Normal Man and in Patients with Motor Disorders. In: Desmedt JE, editor. Human Reflexes, Pathophysiology of Motor Systems, Methodology of Human Reflexes. 3: S.Karger AG; 1973. p. 429-43.
  69. De Koninck Y, Henry JL. Peripheral vibration causes an adenosine-mediated postsynaptic inhibitory potential in dorsal horn neurons of the cat spinal cord. Neuroscience. 1992;50(2):435-43. https://doi.org/10.1016/0306-4522(92)90435-5
  70. Alashram AR, Padua E, Romagnoli C, Annino G. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: A systematic review. NeuroRehabilitation. 2019;45(4):471-81. https://doi.org/10.3233/NRE-192863
  71. Alashram AR, Padua E, Romagnoli C, Raju M, Annino G. Clinical effectiveness of focal muscle vibration on gait and postural stability in individuals with neurological disorders: A systematic review. Physiother Res Int. 2022;27(3):e1945.
  72. Alghadir AH, Anwer S, Zafar H, Iqbal ZA. Effect of localised vibration on muscle strength in healthy adults: a systematic review. Physiotherapy. 2018;104(1):18-24. https://doi.org/10.1016/j.physio.2017.06.006
  73. Fattorini L, Rodio A, Pettorossi VE, Filippi GM. Is the Focal Muscle Vibration an Effective Motor Conditioning Intervention? A Systematic Review. J Funct Morphol Kinesiol. 2021;6(2).
  74. Germann D, El Bouse A, Shnier J, Abdelkader N, Kazemi M. Effects of local vibration therapy on various performance parameters: a narrative literature review. J Can Chiropr Assoc. 2018;62(3):170-81.
  75. Paolucci T, Pezzi L, La Verde R, Latessa PM, Bellomo RG, Saggini R. The Focal Mechanical Vibration for Balance Improvement in Elderly - A Systematic Review. Clin Interv Aging. 2021;16:2009-21. https://doi.org/10.2147/CIA.S328638
  76. Wang H, Chandrashekhar R, Rippetoe J, Ghazi M. Focal Muscle Vibration for Stroke Rehabilitation: A Review of Vibration Parameters and Protocols. Applied Sciences. 2020;10(22):8270.
  77. Sadeghi M, Sawatzky B. Effects of vibration on spasticity in individuals with spinal cord injury: a scoping systematic review. Am J Phys Med Rehabil. 2014;93(11):995-1007. https://doi.org/10.1097/PHM.0000000000000098
  78. McGlone F, Wessberg J, Olausson H. Discriminative and affective touch: sensing and feeling. Neuron. 2014;82(4):737-55. https://doi.org/10.1016/j.neuron.2014.05.001
  79. Shaikh S, Nagi SS, McGlone F, Mahns DA. Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation. PLoS One. 2015;10(9):e0138299.
  80. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971-9. https://doi.org/10.1126/science.150.3699.971
  81. Mendell LM. Constructing and deconstructing the gate theory of pain. Pain. 2014;155(2):210-6. https://doi.org/10.1016/j.pain.2013.12.010
  82. White A, Cummings M, Filshie J, Lee SH. 침의 과학적 접근의 이해. Seoul: Hanmibooks; 2021. 266 p.
  83. Doi A, Sakasaki J, Tokunaga C, Sugita F, Kasae S, Nishimura K, et al. Both ipsilateral and contralateral localized vibratory stimulations modulated pain-related sensory thresholds on the foot in mice and humans. J Pain Res. 2018;11:1645-57. https://doi.org/10.2147/JPR.S162379
  84. Yarnitsky D, Kunin M, Brik R, Sprecher E. Vibration reduces thermal pain in adjacent dermatomes. Pain. 1997;69(1-2):75-7. https://doi.org/10.1016/S0304-3959(96)03250-2
  85. Morgan MM, Heinricher MM, Fields HL. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience. 1992;47(4):863-71. https://doi.org/10.1016/0306-4522(92)90036-2
  86. Casale R, Fundar C, Symeionidou Z, Furnari A, Taiocchi N, Galandra C. 100 Hz Localized vibration increases ipsilateral cerebellar areas activity during a motor task in healthy subjects: Three Cases Report. G Ital Med Lav Ergon. 2019;41(3):255-9.
  87. Kim J, Chung YG, Chung SC, Bulthoff HH, Kim SP. Neural Categorization of Vibrotactile Frequency in Flutter and Vibration Stimulations: An fMRI Study. IEEE Trans Haptics. 2016;9(4):455-64. https://doi.org/10.1109/TOH.2016.2593727
  88. Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol. 2003;551(Pt 2):649-60. https://doi.org/10.1113/jphysiol.2003.043752
  89. DosSantos MF, Moura BS, DaSilva AF. Reward Circuitry Plasticity in Pain Perception and Modulation. Front Pharmacol. 2017;8:790.
  90. Imai R, Osumi M, Ishigaki T, Kodama T, Shimada S, Morioka S. Effects of illusory kinesthesia by tendon vibratory stimulation on the postoperative neural activities of distal radius fracture patients. Neuroreport. 2017;28(17):1144-9. https://doi.org/10.1097/WNR.0000000000000874
  91. Gay A, Aimonetti JM, Roll JP, Ribot-Ciscar E. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation. Brain Res. 2015;1615:148-56. https://doi.org/10.1016/j.brainres.2015.04.041
  92. Tsay A, Allen TJ, Proske U, Giummarra MJ. Sensing the body in chronic pain: a review of psychophysical studies implicating altered body representation. Neurosci Biobehav Rev. 2015;52:221-32. https://doi.org/10.1016/j.neubiorev.2015.03.004
  93. Di Lernia D, Serino S, Riva G. Pain in the body. Altered interoception in chronic pain conditions: A systematic review. Neurosci Biobehav Rev. 2016;71:328-41. https://doi.org/10.1016/j.neubiorev.2016.09.015
  94. Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci. 2021;22(8):458-71. https://doi.org/10.1038/s41583-021-00468-2
  95. Gustin SM, Peck CC, Cheney LB, Macey PM, Murray GM, Henderson LA. Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci. 2012;32(43):14874-84. https://doi.org/10.1523/JNEUROSCI.1733-12.2012
  96. Gay A, Parratte S, Salazard B, Guinard D, Pham T, Legre R, et al. Proprioceptive feedback enhancement induced by vibratory stimulation in complex regional pain syndrome type I: an open comparative pilot study in 11 patients. Joint Bone Spine. 2007;74(5):461-6. https://doi.org/10.1016/j.jbspin.2006.10.010
  97. Seo NJ, Lakshminarayanan K, Lauer AW, Ramakrishnan V, Schmit BD, Hanlon CA, et al. Use of imperceptible wrist vibration to modulate sensorimotor cortical activity. Exp Brain Res. 2019;237(3):805-16. https://doi.org/10.1007/s00221-018-05465-z
  98. Barroso J, Wakaizumi K, Reis AM, Baliki M, Schnitzer TJ, Galhardo V, et al. Reorganization of functional brain network architecture in chronic osteoarthritis pain. Hum Brain Mapp. 2021;42(4):1206-22. https://doi.org/10.1002/hbm.25287
  99. Schlereth T, Schukraft J, Kramer-Best HH, Geber C, Ackermann T, Birklein F. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin. Neuropeptides. 2016;59:57-62. https://doi.org/10.1016/j.npep.2016.06.001
  100. Thammanichanon P, Kaewpitak A, Binlateh T, Leethanakul C. Interval Vibration Reduces Orthodontic Pain Via a Mechanism Involving Down-regulation of TRPV1 and CGRP. In Vivo. 2020;34(5):2389-99. https://doi.org/10.21873/invivo.12052
  101. Guieu R, Tardy-Gervet MF, Giraud P. Substance P-like immunoreactivity and analgesic effects of vibratory stimulation on patients suffering from chronic pain. Can J Neurol Sci. 1993;20(2):138-41. https://doi.org/10.1017/S0317167100047703
  102. Hansson P, Ekblom A, Thomsson M, Fjellner B. Influence of naloxone on relief of acute oro-facial pain by transcutaneous electrical nerve stimulation (TENS) or vibration. Pain. 1986;24(3):323-9. https://doi.org/10.1016/0304-3959(86)90118-1
  103. Guieu R, Tardy-Gervet MF, Giraud P. Met-enkephalin and beta-endorphin are not involved in the analgesic action of transcutaneous vibratory stimulation. Pain. 1992;48(1):83-8. https://doi.org/10.1016/0304-3959(92)90134-W
  104. Hollins M, McDermott K, Harper D. How does vibration reduce pain? Perception. 2014;43(1):70-84. https://doi.org/10.1068/p7637
  105. Casale R, Atzeni F, Bazzichi L, Beretta G, Costantini E, Sacerdote P, et al. Pain in Women: A Perspective Review on a Relevant Clinical Issue that Deserves Prioritization. Pain Ther. 2021;10(1):287-314. https://doi.org/10.1007/s40122-021-00244-1
  106. Aloisi AM, Bachiocco V, Costantino A, Stefani R, Ceccarelli I, Bertaccini A, et al. Cross-sex hormone administration changes pain in transsexual women and men. Pain. 2007;132 Suppl 1:S60-s7. https://doi.org/10.1016/j.pain.2007.02.006
  107. Dahlin L, Lund I, Lundeberg T, Molander C. Vibratory stimulation increase the electro-cutaneous sensory detection and pain thresholds in women but not in men. BMC Complement Altern Med. 2006;6:20.
  108. Katsu Y, Iguchi T. Subchapter 95D - Cortisol. In: Takei Y, Ando H, Tsutsui K, editors. Handbook of Hormones. San Diego: Academic Press; 2016. p. 533-e95D-2.
  109. Ubeda-D'Ocasar E, Jimenez Diaz-Benito V, Gallego-Sendarrubias GM, Valera-Calero JA, Vicario-Merino A, Hervas-Perez JP. Pain and Cortisol in Patients with Fibromyalgia: Systematic Review and Meta-Analysis. Diagnostics (Basel). 2020;10(11).
  110. Iodice P, Bellomo RG, Gialluca G, Fano G, Saggini R. Acute and cumulative effects of focused high-frequency vibrations on the endocrine system and muscle strength. Eur J Appl Physiol. 2011;111(6):897-904. https://doi.org/10.1007/s00421-010-1677-2
  111. Panaro MA, Benameur T, Porro C. Hypothalamic Neuropeptide Brain Protection: Focus on Oxytocin. J Clin Med. 2020;9(5).
  112. Li Q, Becker B, Wernicke J, Chen Y, Zhang Y, Li R, et al. Foot massage evokes oxytocin release and activation of orbitofrontal cortex and superior temporal sulcus. Psychoneuroendocrinology. 2019;101:193-203. https://doi.org/10.1016/j.psyneuen.2018.11.016
  113. Gensic ME, Smith BR, LaBarbera DM. The effects of effleurage hand massage on anxiety and pain in patients undergoing chemotherapy. Jaapa. 2017;30(2):36-8. https://doi.org/10.1097/01.JAA.0000510988.21909.2e
  114. Ni CH, Wei L, Wu CC, Lin CH, Chou PY, Chuang YH, et al. Machine-Based Hand Massage Ameliorates Preoperative Anxiety in Patients Awaiting Ambulatory Surgery. J Nurs Res. 2021;29(3):e152.
  115. Vincenzi F, Pasquini S, Borea PA, Varani K. Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. Int J Mol Sci. 2020;21(22).
  116. Salter MW, Henry JL. Evidence that adenosine mediates the depression of spinal dorsal horn neurons induced by peripheral vibration in the cat. Neuroscience. 1987;22(2):631-50. https://doi.org/10.1016/0306-4522(87)90359-9
  117. Russell WR, Spalding JM. Treatment of painful amputation stumps. Br Med J. 1950;2(4670):68-73. https://doi.org/10.1136/bmj.2.4670.68
  118. Livingston WK. Pain Mechanisms. New York: Macmillan; 1943.
  119. Moggio L, de Sire A, Marotta N, Demeco A, Ammendolia A. Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disabil Rehabil. 2022;44(20):5741-9. https://doi.org/10.1080/09638288.2021.1946175
  120. Douguet D, Patel A, Xu A, Vanhoutte PM, Honore E. Piezo Ion Channels in Cardiovascular Mechanobiology. Trends Pharmacol Sci. 2019;40(12):956-70. https://doi.org/10.1016/j.tips.2019.10.002
  121. Maloney-Hinds C, Petrofsky JS, Zimmerman G, Hessinger DA. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol Ther. 2009;11(1):39-43. https://doi.org/10.1089/dia.2008.0011
  122. Bovenzi M, Lindsell CJ, Griffin MJ. Magnitude of acute exposures to vibration and finger circulation. Scand J Work Environ Health. 1999;25(3):278-84. https://doi.org/10.5271/sjweh.435
  123. Ren W, Pu F, Luan H, Duan Y, Su H, Fan Y, et al. Effects of Local Vibration With Different Intermittent Durations on Skin Blood Flow Responses in Diabetic People. Front Bioeng Biotechnol. 2019;7:310.
  124. Liao F, Zhang K, Zhou L, Chen Y, Elliott J, Jan YK. Effect of Different Local Vibration Frequencies on the Multiscale Regularity of Plantar Skin Blood Flow. Entropy (Basel). 2020;22(11).
  125. Krajnak K, Miller GR, Waugh S, Johnson C, Kashon ML. Characterization of frequency-dependent responses of the vascular system to repetitive vibration. J Occup Environ Med. 2012;54(8):1010-6. https://doi.org/10.1097/JOM.0b013e318255ba74
  126. Beaulieu LD, Schneider C, Masse-Alarie H, Ribot-Ciscar E. A new method to elicit and measure movement illusions in stroke by means of muscle tendon vibration: the Standardized Kinesthetic Illusion Procedure (SKIP). Somatosens Mot Res. 2020;37(1):28-36. https://doi.org/10.1080/08990220.2020.1713739