• Title/Summary/Keyword: local ventilation system

Search Result 107, Processing Time 0.025 seconds

Comparison of age of air and air change effectiveness between supply diffuser types (공조취출방식에 따른 공기의 나이 및 환기효율 비교)

  • Cho, D.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.117-124
    • /
    • 1999
  • In this study, three different supply diffuser types(desktop, floor and ceiling) are compared in view of their ability to distribute supply air to the workstation breathing zone. The measurements on the age of air and the air change effectiveness using the tracer gas method are carried out to analyze the ventilation performance for provision of fresh air between the diffusers. The desktop diffuser type could deliver air directly to the occupants breathing zone with a high degree of effectiveness. The measured local air change effectiveness of the desktop diffuser in the breathing zone was usually 1.13 to 1.23 times greater than that of ceiling and floor diffusers. When the minimum outside air change rate as specified using ASHRAE Standard 62R is supplied with a desktop diffuser type, the volume of outside air can be reduced 13 to 23%, resulting in a commensurate in ventilation energy use.

  • PDF

Simulation Modelling of the Pollutant Concentration in Vehicle Tunnels (차량터널 오염물질 농도 예측 시뮬레이션 모델 연구)

  • 이창우;양원철;이송희
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The goal of this study is to develop a simulation model of the pollutant dispersion in vehicle tunnels, which can be utilized to optimize the tunnel ventilation system. Contaminant dispersion is modelled using a FDM solution of advective diffusion equation. Taking into consideration the local vehicle emission rates by year, it is user-oriented and its logic is generalized. Therefore, differences in the ventilation scheme can be easily adapted. The results of its application to a urban tunnel show that the relative errors are 1.1~6.8% for the natural velocity, 1.3% for the traffic-induced velocity and 2.9% for the total air quantity. Simulated CO concentrations along the entire tunnel show about 13% of the relative error.

  • PDF

Evaluation of Airflow Control Capability of Natural Ventilators with Various Dampers (자연환기 벤틸레이터의 댐퍼 형태별 환기량 조절능력 평가)

  • Kim, Tae-Hyeong;Ha, Hyun-Chul;Park, Seung-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.364-374
    • /
    • 2006
  • Natural ventilation technique could be the substitute for or the complement to the local exhaust ventilation system in the sense of protecting work environment. Moreover, it has many strong points ; almost no mechanical parts, no energy use and no noise. If applied appropriately, it could have the very high ventilation rate and save a lot of energy expense. But, it depends on the outdoor environment, especially temperature and wind speed/direction. Predicting the capacity of natural ventilation is not an easy job because it comes from both buoyancy and wind effect. Another problem is too much flow through the ventilator especially in winter time due to too much difference between indoor and outdoor temperature. Thus some ventilators in industries are sealed by door or plastic sheet, resulting in bad work environment. Various types of dampers are used to control the flow rate through ventilators. The capabilities of flow control by damper has not been estimated. In addition, it was not tested whether the damper could obstruct the flow through ventilator when fully opened. To answer these questions, 4 types of dampers were tested by using computational fluid dynamics. 10 different configurations includes no damper, full open and half open. Flow rates were estimated and airflow fields were analysed to clarify the before-mentioned questions. The dual type damper was the best choice for controling the capability of ventilator. In addition, the upward grill type damper was the best for not obstructing the air flow when fully opened.

A Study on Indirect Prediction of Welding Fume Concentrations Using Computational Fluid Dynamics (전산유체역학을 이용한 용접흄농도 간접적 예측가능성 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Seo, Jeoung Yoon;He, Rong Bin;Lim, Jung Ho;Kang, Dae Woong;Ha, Hyun Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.328-334
    • /
    • 2009
  • There are various methods for welding fume control. These methods can be divided into local exhaust system, general ventilation system and integrated control system. With the general ventilation system, we should have a good prediction tool for testing various appropriate control options. But, until now there are not many studies about how to predict the welding fume concentrations. Especially, the prediction of welding fume concentration is not a very easy task because welding fume is the particulate matters. In this study, we tried to measure $CO_2$ concentrations and welding fume concentrations in a small single room with a small ventilation opening. Using commercially available CFD (Computational Fluid Dynamics) software, we tried to predict $CO_2$ concentrations under the exactly same conditions. Then, we tried to compare the numerical $CO_2concentrations$ with the experimental results to know whether we could predict $CO_2$ concentrations. Then we tried to compare $CO_2$ concentrations with experimental welding fume concentrations to know whether we can use the numerical $CO_2concentrations$ to predict the welding fume concentration indirectly.

Field Survey of structural and Environmental Characteristics of Pig Houses in the Southern Provinces in Korea (전업양축농가를 위한 남부지방 돈사의 구존 및 환경실태조사)

  • 최홍림;송준익;안희권
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2000
  • The structural and environmental characteristics of typical pig houses in different growth phases were surveyed and analyzed. Based on the data for thirty nine selected farms in four provinces, Jeonbuk-do, Jeonnam-do, Gyeongbuk-do, and Gyeongnam-do, in the southern provinces, Korea, the goal is to eventually establish standard pig houses of sow and litter, nursery pigs, and growing-finishing pigs. The survey included farm scale, production specialization, structural dimensions of the houses and their ventilation systems, cooling and heating systems, and floor and pit systems related to manure collection. The survey showed 90∼98% of growing-finishing pig houses adopted the sidewall curtain systems. The sidewall curtain systems, although popular, is not well insulated which leads to excessive heating costs in winter. Regarding flooring and manure collection system of the house, 23∼35% of growing-finishing houses installed scraper systems with concrete-slat floors in Gyeongsang provinces while 52∼78% did in Jeolla provinces. The cause of a large variance in flooring between tow regions could not be academically pinpointed, rather it could be attributed to the advice of neighbors who leads local pig production circle. A general trend toward enlargement and enclosure of pig houses for all growth phases was gaining popularity in most regions in recent years. A steady shift to multisite operation from continuous operation was also observed to prevent a disease transfer. The structural design of a standard pig house with its environmental control systems including ventilation and heating/cooling system was suggested for further validation study. In-depth analysis of the survey data is presented in the Results and Discussion section.

  • PDF

Hazards of Chloroprene and the Workplace Management (클로로프렌의 유해성과 작업환경 관리)

  • Kim, Hyeon-Yeong;Lim, Cheol-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, we performed risk assessment of chloroprene by hazard evaluation and workplace investigation. The chemical is used to manufacture of shoes, tires, adhesives, and classified as IARC category 2B (possibly carcinogenic to humans) and target organ systemic toxicity. It is used about 1,300 tons per year in 27 sites. It was calculated the risk of carcinogenesis with chloroprene by Monte-carlo simulation that the averages are 2,199 and 26,404 in each case of working less than 15 minutes per day with local exhaust ventilation and over 4 hours per day without local exhaust ventilation. The risk of target organ systemic toxicity are 4.10 and 169.06 with high correlation with working time to be longer and with ventilation system. Therefore, it is recommended that the local exhaust ventilation and respirators to prevent occupational cancer and target organ systemic toxicity with chloroprene. Especially it is determined that there is a need to strengthen the workplace exposure limit (TWA 10 ppm) in Korea since it is managed with TWA less than 5 ppm ($18mg/m^3$) by the United States Occupational Safety and Health Administration (OSHA) as well as it has carcinogenicity, reproductive toxicity.

Evaluation of the Performance and the Energy Consumption Characteristics of Heat Recovery Ventilators in Apartments (공동주택 열교환기의 성능 및 에너지소비 특성 평가)

  • Kim Sang-Min;Park Byung-Yoon;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.496-504
    • /
    • 2005
  • Heat recovery ventilators (HRV) are developed in order to satisfy both energy conservation and the improvement of indoor air quality as an alternative for current natural ventilation systems and local mechanical ventilation systems in kitchens and bathrooms. However, the performance of HRV system and the consequent effect on heating and cooling energy saving have not been sufficiently validated quantitatively in case of the application of HRVs in real residences. In this study, field measurement and computer simulation were conducted in both summer and winter period to assess the performance and validate energy conservation effect of HRVs. Under the Korea weather condition, average total heat recovery efficiency was $27\%$ in summer and $46\%$ in winter. According to the field measurement, HRV system can save the energy by $10\%$ in summer and 15$\%$ in winter. Furthermore, according to the simulation assessment, HRV system can save the energy by $17\%$ in summer and $17\%$ in winter.

Evaluation and Prediction of Cleanliness Level in the Mini-Environment System Using Local Mean Air-Age (국소평균공기연령을 이용한 국소환경시스템의 청정도 평가 및 예측)

  • Noh, Kwang-Chul;Lee, Hyeon-Cheol;Park, Jung-Il;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.457-466
    • /
    • 2007
  • A numerical and experimental study on the evaluation and the prediction of cleanliness level in the mini-environment system was carried out. Using the concept of local mean air-age (LMA) and effective flow rate, the new direct method for estimating the mini-environment was developed and compared with the previous performance index of airflow pattern characteristics. It was found out that the airflow pattern analysis is a restricted method to estimate the real performance of the mini-environment. The reason is that the airflow pattern cannot predict the effect of the increment of the ventilation rate on the cleanliness level in the mini-environment. While LMA is capable of showing the effects of the contaminant accumulation caused by turbulent intensity, eddy, and the increment of the effective flow rate. This result showed that LMA is more exact and effective performance index than the previous one like the airflow pattern characteristics.

The Status of Maintenance of Exhaust Fans and Bag filters in Melting Processes in a foundry industrial complex (주물 공단 용해공정의 송풍기 및 백필터 관리 실태)

  • Kim, Tae Hyeung;Ha, Hyun Chul;Jeoung, Chun Hwa;Seo, Jeoung Yoon;Piao, Cheng Xu;Yang, Jun Ho;Li, Xiaoyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.212-223
    • /
    • 2007
  • 18 Local exhaust ventilation systems in 10 melting companies located in an industrial complex were tested to know the status of maintenance. Test items were fan flowrates, fan static pressures, rotational speeds and differential pressures of bag filters. Only 22% of the tested fans has more than 80% flowrate efficiency. 44% of the fans has lower than 60% efficiency. The performance of the fans are not in a good status. For the fans with lower than 60% efficiency, the analysis shows that the lower flowrate might be caused by the degradation of fan performance. On the other hand, for the fan s with higher than 60% efficiency, the main cause of flowrate reduction might be too much pressure losses due to clogging of filter bags. The degradation of fans usually lead the reduction of hood capture efficiency, resulting in the increase of contaminant concentrations in workplace. To keep fans in good status, self inspections should be periodically conducted. This inspection should include the measurements of flowrate and pressures. The most important thing to be performed is the initial test of local exhaust ventilation system because the initial test data should be used to know the level of system degradation.