• Title/Summary/Keyword: local search algorithm

Search Result 447, Processing Time 0.022 seconds

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Fast Intra-Mode Decision for H.264/AVC using Inverse Tree-Structure (H.264/AVC 표준에서 역트리 구조를 이용하여 고속으로 화면내 모드를 결정하는 방법)

  • Ko, Hyun-Suk;Yoo, Ki-Won;Seo, Jung-Dong;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.310-318
    • /
    • 2008
  • The H.264/AVC standard achieves higher coding efficiency than previous video coding standards with the rate-distortion optimization (RDO) technique which selects the best coding mode and reference frame for each macroblock. As a result, the complexity of the encoder have been significantly increased. In this paper, a fast intra-mode decision algorithm is proposed to reduce the computational load of intra-mode search, which is based on the inverse tree-structure edge prediction algorithm. First, we obtained the dominant edge for each $4{\times}4$ block from local edge information, then the RDO process is only performed by the mode which corresponds to dominant edge direction. Then, for the $8{\times}8$ (or $16{\times}16$) block stage, the dominant edge is calculated from its four $4{\times}4$ (or $16{\times}16$) blocks' dominant edges without additional calculation and the RDO process is also performed by the mode which is related to dominant edge direction. Experimental results show that proposed scheme can significantly improve the speed of the intra prediction with a negligible loss in the peak signal to noise ratio (PSNR) and a little increase of bits.

Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen

  • Do, Thi Huyen;Dao, Trong Khoa;Nguyen, Khanh Hoang Viet;Le, Ngoc Giang;Nguyen, Thi Mai Phuong;Le, Tung Lam;Phung, Thu Nguyet;Straalen, Nico M. van;Roelofs, Dick;Truong, Nam Hai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.738-747
    • /
    • 2018
  • Objective: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. Methods: The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Results: Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Conclusion: Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

Molecular Analysis of Pathogenic Molds Isolated from Clinical Specimen (임상검체에서 분리된 병원성 사상균의 분자생물학적 분석)

  • Lee, Jang Ho;Kwon, Kye Chul;Koo, Sun Hoe
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.229-236
    • /
    • 2020
  • Sixty-five molds isolated from clinical specimens were included in this study. All the isolates were molds that could be identified morphologically, strains that are difficult to identify because of morphological similarities, and strains that require species-level identification. PCR and direct sequencing were performed to target the internal transcribed spacer (ITS) region, the D1/D2 region, and the β-tubulin gene. Comparative sequence analysis using the GenBank database was performed using the basic local alignment search tool (BLAST) algorithm. The fungi identified morphologically to the genus level were 67%. Sequencing analysis was performed on 62 genera and species level of the 65 strains. Discrepancies were 14 (21.5%) of the 65 strains between the results of phenotypic and molecular identification. B. dermatitidis, T. marneffei, and G. argillacea were identified for the first time in Korea using the DNA sequencing method. Morphological identification is a very useful method in terms of the reporting time and costs in cases of frequently isolated and rapid growth, such as Aspergillus. When molecular methods are employed, the cost and clinical significance should be considered. On the other hand, the molecular identification of molds can provide fast and accurate results.

Scheduling of Parallel Offset Printing Process for Packaging Printing (패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링)

  • Jaekyeong, Moon;Hyunchul, Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • With the growth of the packaging industry, demand on the packaging printing comes in various forms. Customers' orders are diversifying and the standards for quality are increasing. Offset printing is mainly used in the packaging printing since it is easy to print in large quantities. However, productivity of the offset printing decreases when printing various order. This is because it takes time to change colors for each printing unit. Therefore, scheduling that minimizes the color replacement time and shortens the overall makespan is required. By the existing manual method based on workers' experience or intuition, scheduling results may vary for workers and this uncertainty increase the production cost. In this study, we propose an automated scheduling method of parallel offset printing process for packaging printing. We decompose the original problem into assigning and sequencing orders, and ink arrangement for printing problems. Vehicle routing problem and assignment problem are applied to each part. Mixed integer programming is used to model the problem mathematically. But it needs a lot of computational time to solve as the size of the problem grows. So guided local search algorithm is used to solve the problem. Through actual data experiments, we reviewed our method's applicability and role in the field.

A Study on Innovation Plan of Archives' Recording Service using Social Media: Focused on Gyeongnam Archives and Seoul Metropolitan Archives (소셜미디어를 이용한 기록관리기관의 기록서비스 혁신 방안 연구: 경남기록원과 서울기록원을 중심으로)

  • Kim, Ye-ji;Kim, Ik-han
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.2
    • /
    • pp.1-25
    • /
    • 2022
  • Today, most archives provide recording services through social media; however, their effectiveness is very low. This study aimed to analyze the causes of insufficient social media recording service, focusing on Gyeongnam Archives and Seoul Metropolitan Archives, which are permanent records management institutions and local government archives, and design ways to create synergy by mutual growth with classical recording service. Through literature research, the characteristics and mechanisms of each social medium were identified, and the institutions' current status of social media operations and internal documents were reviewed to analyze the common problems. An in-depth analysis was conducted by interviewing the person in charge of recording services at each institution. In addition, a plan that can be applied to archives was proposed by reviewing the cases of social media operations of domestic-related institutions and overseas archives. Based on this, a new recording service process was established, strategic operation plans for each social medium were proposed, and a plan to mutually grow with the existing recording service was designed.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.