• 제목/요약/키워드: local approximate solutions

검색결과 20건 처리시간 0.019초

Buckling Strength Increment of Curved Panels Due to Rotational Stiffness of Closed-Section Ribs Under Uniaxial Compression

  • Andico, Arriane Nicole P.;Park, Yong-Myung;Choi, Byung H.
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1363-1372
    • /
    • 2018
  • Recently, there have been studies about the increasing effect on the local plate buckling strength of flat plates when longitudinally stiffened with closed-section ribs and an approximate solution to quantitatively estimate these effects were suggested for flat plates. Since there are few studies to utilize such increasing effect on curved panels and a proper design method is not proposed, thus, this study aims to numerically evaluate such effect due to the rotational stiffness of closed-section ribs on curved panels and to propose an approximate method for estimating the buckling strength. Three-dimensional finite element models were set up using a general structural analysis program ABAQUS and a series of parametric numerical analyses were conducted in order to examine the variation of buckling stresses along with the rotational stiffness of closed-section ribs. By using a methodology that combine the strength increment factor due to the restraining effect by closed-section ribs and the buckling coefficient of the panel curvature, the approximate solutions for the estimation of buckling strength were suggested. The validity of the proposed methods was verified through a comparative study with the numerical analysis results.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model

  • Zhou, Yan-Guo;Chen, Yun-Min;Ding, Hao-Jiang
    • Smart Structures and Systems
    • /
    • 제1권3호
    • /
    • pp.309-324
    • /
    • 2005
  • This paper presents an efficient and accurate coupled beam model for piezoelectric bimorphs based on improved first-order shear deformation theory (FSDT). The model combines the equivalent single layer approach for the mechanical displacements and a layerwise modeling for the electric potential. General electric field function is proposed to reasonably approximate the through-the-thickness distribution of the applied and induced electric potentials. Layerwise defined shear correction factor (k) accounting for nonlinear shear strain distribution is introduced into both the shear stress resultant and the electric displacement integration. Analytical solutions for free vibrations and forced response under electromechanical loads are obtained for the simply supported piezoelectric bimorphs with series or parallel arrangement, and the numerical results for various length-to-thickness ratios are compared with the exact two-dimensional piezoelasticity solution. Excellent predictions with low error estimates of local and global responses as well as the modal frequencies are observed.

경계요소법에 의한 선형 압밀문제의 해석 (Analysis of Linear Consolidation Problems by the Boundary Element Method)

  • 서일교
    • 전산구조공학
    • /
    • 제8권4호
    • /
    • pp.129-136
    • /
    • 1995
  • 본 연구에서는 Biot의 선형압밀이론에 근거한 2차원 압밀문제의 근사해를 구하기 위한 경계요소법을 제시한다. 먼저 선형 압밀문제의 기초미분방정식의 시간의존성을 제거하기 위하여 시간에 대한 Laplace변환을 적용시키고, 변환공간에서의 미분방정식을 대상으로 정식화를 한다. 변환공간에서의 변위와 간극수압에 대한 경계적분방정식계를 유도하고, 변환공간에서의 연성문제에 대한 기본해를 구체적으로 보인다. 변환공간에서의 해를 실공간의 해로 변환하기 위하여 Hosono의 수직 Laplace역변환법을 적용하였으며, 해석예로서 2차원 반무한 지반의 국소재하에 의한 압밀문제를 해석예로 선택하였고, 암밀해와 비교하여 제안해법의 적용성 및 타당성을 보였다.

  • PDF

ON A QUADRATICALLY CONVERGENT ITERATIVE METHOD USING DIVIDED DIFFERENCES OF ORDER ONE

  • Argyros, Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권3호
    • /
    • pp.203-221
    • /
    • 2007
  • We introduce a new two-point iterative method to approximate solutions of nonlinear operator equations. The method uses only divided differences of order one, and two previous iterates. However in contrast to the Secant method which is of order 1.618..., our method is of order two. A local and a semilocal convergence analysis is provided based on the majorizing principle. Finally the monotone convergence of the method is explored on partially ordered topological spaces. Numerical examples are also provided where our results compare favorably to earlier ones [1], [4], [5], [19].

  • PDF

비선형 구조물에 대한 이동 점근법(MMA)의 적용 (Application of Method of Moving Asymptotes for Non-Linear Structures)

  • 진경욱;한석영;최동훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.141-146
    • /
    • 1999
  • A new method, so called MMA(Method of Moving Asymptotes) was applied to the optimization problems of non-linear functions and non-linear structures. In each step of the iterative process, tile MMA generates a strictly convex approximation subproblems and solves them by using the dual problems. The generation of these subproblems is controlled by so called 'moving asymptotes', which may both make no oscillation and speed up tile convergence rate of optimization process. By contrast in generalized dual function, the generated function by MMA is always explicit type. Both the objective and behaviour constraints which were approximated are optimized by dual function. As the results of some examples, it was found that this method is very effective to obtain the global solution for problems with many local solutions. Also it was found that MMA is a very effective approximate method using the original function and its 1st derivatives.

  • PDF

불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석 (Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method)

  • 윤광희;이해균;이남주
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1383-1393
    • /
    • 2014
  • 최근, 급속한 컴퓨터 하드웨어의 성능 향상과 전산유체역학 분야의 이론적 발전으로, 고차 정확도의 수치기법들이 계산수리학 분야에 적용되어 왔다. 본 연구에서는 1차원 천수방정식에 대한 수치 해법으로 TVD Runge-Kutta 불연속 갤러킨(RKDG) 유한요소법을 적용하였다. 대표적인 천이류(transcritical flow)의 예로 순간적인 댐 붕괴에 의한 댐 붕괴류(dam-break flow) 흐름과 지형변화에 의한 천이류를 모의하였다. 리만(Riemann) 근사해법으로 로컬 Lax-Friedrichs (LLF), Roe, HLL 흐름률(flux) 기법을 사용하였고, 불필요한 진동을 제거하기 위하여, 기울기 제한자로서 MUSCL 제한자를 사용하였다. 개발된 모델은 1차원 댐 붕괴류와 천이류에 적용하였다. 수치해석 결과는 해석해, 수리실험 결과와 비교하였다.

Bleich의 근사해법을 이용한 직교이방성 구조용부재의 탄성국부좌굴해석 (Elastic Local Buckling Analysis of Orthotropic Structural Shapes Using Bleich's Approximate Method)

  • 이원복;윤순종;이석순
    • 대한토목학회논문집
    • /
    • 제14권4호
    • /
    • pp.795-805
    • /
    • 1994
  • 본 논문은 pultrusion process를 통해서 생산된 섬유보강 플라스틱 구조용부재(직교이방성)의 국부좌굴응력을 예측하기 위해서 기존의 동방성부재에 대한 근사적 이론식인 Bleich해법을 확장하여 직교이방성 부재의 경우에도 적용할 수 있도록 유도하였으며, 유도과정에서는 무차원 비를 도입 계산이 더욱 용이하도룩 하였다. 또한, 보고된 정밀해 및 실험한 결과치와 비교하였으며 pultrusion process를 통해서 생산된 섬유보강 플라스틱 구조용 부재의 국부좌굴응력을 예측하는데 이 식이 효과적으로 사용될 수 있음을 도식적으로 보여 주었다. 또 다양한 단면치수와 길이를 갖는 기풍의 국부좌굴응력을 예측하여 설계시 사용될 수 있도록 도식화하였다. 또한, 섬유보강 플라스틱 구조용부재(기둥)가 국부좌굴을 일으키지 않고 재료가 파괴에 도달하거나 Euler의 임계좌굴이 먼저 발생할 판의 폭과 두께의 비를 수식적으로 제안하였다.

  • PDF

가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석 (Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface)

  • 유경훈;오명도;명현국
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

잉크 색상 변화가 존재하는 인쇄 공정의 스케줄링 (Scheduling of Printing Process in which Ink Color Changes Exist)

  • 문재경;엄현섭;태현철
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.32-42
    • /
    • 2021
  • The printing process can have to print various colors with a limited capacity of printing facility such as ink containers that are needed cleaning to change color. In each container, cleaning time exists to assign corresponding inks, and it is considered as the setup cost required to reduce the increasing productivity. The existing manual method, which is based on the worker's experience or intuition, is difficult to respond to the diversification of color requirements, mathematical modeling and algorithms are suggested for efficient scheduling. In this study, we propose a new type of scheduling problem for the printing process. First, we suggest a mathematical model that optimizes the color assignment and scheduling. Although the suggested model guarantees global optimality, it needs a lot of computational time to solve. Thus, we decompose the original problem into sequencing orders and allocating ink problems. An approximate function is used to compute the job scheduling, and local search heuristic based on 2-opt algorithm is suggested for reducing computational time. In order to verify the effectiveness of our method, we compared the algorithms' performance. The results show that the suggested decomposition structure can find acceptable solutions within a reasonable time. Also, we present schematized results for field application.