• Title/Summary/Keyword: loading positions

Search Result 130, Processing Time 0.027 seconds

Subsurface stress field beneath the cam-roller contact surface under elastohydrodynamic lubrication and tangential loading (탄성유체윤활 및 접선하중 상태에서 캠-롤러 접촉표면의 내부 응력장)

  • Kim Hyung-Ja;Kim Young-Dae;Park Kyung-Dong;Koo Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.261-268
    • /
    • 2004
  • For cam and roller-follower contacting surfaces, the effect of tangential loading on the subsurface stress field at an elaso-hydrodynamic lubrication condition has been studied numerically. As tangential load increases, the subsurface stress field extended more widely to the direction of the tangential load. The positions of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load at the elasto-hydrodynamic lubrication condition is of little consequence to the subsurface stress field.

  • PDF

Comparison of behaviour of basal reinforced piled embankment with two layer of reinforcement

  • Balaban, Eren;Onur, Mehmet I.
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.233-245
    • /
    • 2018
  • Interest to basal reinforced piled embankments is increasing recently due to their rapid construction and reliability. A comprehensive parametric study is conducted to determine effects of pile properties, reinforcement stiffness, embankment properties and soft soil properties into settlements, pressures and excess pore water pressure development and dissipations. Results which are obtained by using one-layer reinforcement during construction are compared with the results obtained by using two-layer reinforcement during construction. Finite element method is used during the parametric study. Second layer of reinforcement is placed in five different positions in order to reveal effects of reinforcement position into behaviour. Traffic load is also taken into consideration during the study. Differences between the results without presence of traffic loading and with presence of traffic loading is stated in this the study.

Design and analysis of tactile sensor for tri-axial force measurement using FEM (유한요소해석을 이용한 3축 힘 촉각센서 설계 및 해석)

  • Cho, Woon-Ki;Kim, Jong-Ho;Kang, Dae-Im;Lee, Ouk-Sub
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.865-870
    • /
    • 2001
  • A sensing element for tri-axial force measurement, unit sensor of tactile sensor, was designed and evaluated by using finite element method (ANSYS). The sensor has a maximum force range of ${\pm}10$ N in the x, y, and z direction. Optimal cell structures and piezoresistor positions were determined by the strain distribution obtained from finite element analysis. Finally three Wheatstone birdge circuits were arranged and verified by $F_x$, $F_y$, and $F_z$ loading conditions. In addition, in case of sensing element subjected to thermal loading, the outputs of three bridge circuits were also evaluated.

  • PDF

Buckling and vibration analysis of stiffened plate subjected to in-plane concentrated load

  • Srivastava, A.K.L.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.685-704
    • /
    • 2003
  • The buckling and vibration characteristics of stiffened plates subjected to in-plane concentrated edge loading are studied using finite element method. The problem involves the effects of non-uniform stress distribution over the plate. Buckling loads and vibration frequencies are determined for different plate aspect ratios, boundary edge conditions and load positions. The non-uniform stresses may also be caused due to the supports on the edges. The analysis presented determines the initial stresses all over the region considering the pre-buckling stress state for different kinds of loading and edge conditions. In the structural modeling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. The vibration characteristics are discussed and the results are compared with those available in the literature and some interesting new results are obtained.

Spectrophotometric Determination of Maximum Loading Capacity of a Dendrimer

  • Youngjin Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.217-221
    • /
    • 2023
  • A series of hydrophobic dodecyl-terminated 6th-generation poly(amidoamine) dendrimer (H)-encapsulated cadmium sulfide ((CdS)n@H) nanoparticles in a co-solvent (toluene: methanol = 6.8: 3.2 v/v) are synthesized. The diameters of CdS nanoparticles within the dendrimer were estimated by analyzing the positions of the first excitonic absorption peaks of CdS in UV-vis spectra. The size of the CdS nanoparticle within the dendrimer shows a saturation value as the CdS/H ratio (n) increases, which is believed to be due to the limited physical size of the void cavity within the dendrimer. This simple and convenient method of estimating the saturation of the size of CdS in dendrimers may be useful in determining the maximum void space within other dendrimers under various solvent conditions.

Chaotic Responses of Curved Plate under Sinusoidal Loading

  • W.Y. Poon;C.F. Ng;Lee, Y.Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.85-96
    • /
    • 2003
  • In the present investigation, the nonlinear dynamic buckling of a curved plate subjected to sinusoidal loading is examined. By the theoretical analyses, a highly nonlinear snap-through motion of a clamped-free-clamped-free plate and its effect on the overall vibration response are investigated. The problem is reduced to that of a single degree of freedom system with the Rayleigh-Ritz procedure. The resulting nonlinear governing equation is solved using Runge-Kutta (RK-4) numerical integration method. The snap-through boundaries, which vary with different damping coefficient and linear circular frequency of the flat plate are studied and given in terms of force and displacement. The relationships between static and dynamic responses at the start of a snap-through motion are also predicted. The analysis brings out various characteristic features of the phenomenon, i.e. 1) small oscillation about the buckled position-softening spring type motion, 2) chaotic motion of intermittent snap-through, and 3) large oscillation of continuous snap-through motion crossing the two buckled positions-hardening spring type. The responses of buckled plate were found to be greatly affected by the snap-through motion. Therefore, better understanding of the snap-through motion is needed to predict the full dynamic response of a curved plate.

Study on Bridge Dynamic Responses under Vehicle Loads (차량하중에 의한 교량의 동적응답특성 분석)

  • 김상효;박흥석;윤성호
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.337-347
    • /
    • 1997
  • The dynamic responses of highway bridges are varying depending on the features of either traveling vehicles or bridges. In this study, the probabilistic characteristics of dynamic amplification factors of highway bridges due to traveling heavy vehicles have been examined through analytical simulation processes. The truck with tandem axle and tractor with semitrailer are selected as the representative heavy vehicles, which are modeled with three dimensional 7-DOF and 12-DOF models, respectively. The analytical results have been compared with the experimental results of dynamic loading tests and the validity of the analytical models has been examined. Parametric studies on the means and extreme values of amplification factors have been performed with various traffic conditions such as vehicle types, vehicle weights, surface profiles, number of loading vehicles, loading positions, etc.

  • PDF

Test and evaluation of a large scale composite rotor blade for wind turbine (풍력발전용 대형 복합재 회전날개의 구조시험 및 평가에 관한 연구)

  • ;;;Y. Sugiyama
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.76-81
    • /
    • 2001
  • A structural test of the wind turbine rotor blade is to evaluate the uncertainty of design due to selection of material, design concepts, production processes and so on, and their possible impacts on the structural integrity. In the full-scale static strength test, the measuring parameters are strain and displacements vs. loads, weight and the center of gravity. In order to simulate the aerodynamics load, the three-point loading method is applied. There is slight difference between the measured results and the predicted results for the reference fiber volume fraction of 60% . However, the agreement between the measured results and the predicted results with the actual fiber volume fraction of 52.5% is good. Even though a slightly non-linearity from 80% loading to 100% loading exists, a linear static solution is sufficient for the design purpose due to te small amount of non-linearity. Comparison between measured and predicted strain results at the maximum thickness positions of the blade profile for 0.236R(5.56m), 0.493R(11.59m) and 0.574R(13.43m), under 20%, 40%, 60%, 80% and 100% loadings for the upper part of the blade. The predicted values are in good agreement with the measured values.

  • PDF

Response of square anchor plates embedded in reinforced soft clay subjected to cyclic loading

  • Biradar, Jagdish;Banerjee, Subhadeep;Shankar, Ravi;Ghosh, Poulami;Mukherjee, Sibapriya;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Plate anchors are generally used for structures like transmission towers, mooring systems etc. where the uplift and lateral forces are expected to be predominant. The capacity of anchor plate can be increased by the use of geosynthetics without altering the size of plates. Numerical simulations have been carried out on three different sizes of square anchor plates. A single layer geosynthetic has been used as reinforcement in the analysis and placed at three different positions from the plate. The effects of various parameters like embedment ratio, position of reinforcement, width of reinforcement, frequency and loading amplitude on the pull out capacity have been presented in this study. The load-displacement behaviour of anchors for various embedment ratios with and without reinforcement has been also observed. The pull out load, corresponding to a displacement equal to each of the considered maximum amplitudes of a given frequency, has been expressed in terms of a dimensionless breakout factor. The pull out load for all anchors has been found to increase by more than 100% with embedment ratio varying from 1 to 6. Finally a semi empirical formulation for breakout factor for square anchors in reinforced soil has also been proposed by carrying out regression analysis on the data obtained from numerical simulations.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.