• 제목/요약/키워드: loading level

Search Result 1,190, Processing Time 0.029 seconds

Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test (변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향)

  • Tran, Dong-Kiem-Lam;Park, Sung-Sik;Nguyen, Tan-No;Park, Jae-Hyun;Sung, Hee-Young;Son, Jun-Hyeok;Hwang, Keum-Bee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.

Study for Loading Characteristic of Tilting Mechanism on Korea Tilting Train (II) - Adjustmemt for Interface of carbody and Bogie (한국형틸팅열차 틸팅기구장치 부하특성 평가 연구(II) - 대차/차체 인터페이스 조정에 의한 정적부하 영향분석)

  • Ko, Tae-Hwan;Lee, Wang-Sang;Lee, Bum-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.951-956
    • /
    • 2011
  • As the evaluation of loading characteristic on tilting mechanism is the most important one of the function test of tilting mechanism, the changing characteristic of load must be investigated on tilting of carbody for both the static and running condition of train. In this study, we reduced the load of tilting mechanism by adjusting the interface of carbody and bogie such as the weight balance, level of underframe, height of leveling valve, height of axle box and center position of tilting actuator with the characteristic curve of load for optimal condition of the tilting mechanism obtained in the previous study. Furthermore, the factor and effect of the interfacial structures respecting the load of tilting mechanism was evaluated by analyzing the changing characteristic of load obtained in the process of adjustment of interfaces. From these data, we will propose the maintenance standards for interfacial structures and tilting mechanism in order to minimize the load of tilting mechanism by analyzing in detail the characteristic of load for the main factors of the interfacial structure effecting on the load of tilting mechanism.

  • PDF

Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites

  • Cho, Mi-Jung;Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Cellulose nanowhisker (CNW) isolated from hardwood bleached kraft pulp (HW-BKP) using sulfuric acid hydrolysis was suspended in polyvinyl alcohol (PVA) and electrospun into composites nanofibers. Transmission electron microscopy (TEM) revealed the CNW to be rod-like, approximately of $16.1{\pm}4.6$ nm wide and $194{\pm}61$ nm long, providing an aspect ratio of about 12, with a particle size distribution range of $662.2{\pm}301.2$ nm. Uniform and high quality CNW/PVA composite nanofibers were successfully manufactured by the electrospinning method. As the CNW loading increases, the viscosity of CNW/PVA solutions shows a minimum at 1% CNW level which subsequently results in the smallest diameter (193 nm) of electrospun nanofibers. The average diameter of the nanofibers increased up to 284 nm with increasing CNW loading. These results suggest that the electrospinning method provides a great potential of manufacturing consistent and reliable nanofibers from CNW/PVA solution for the formation of scaffolds with potentials in future application.

Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N

  • Chen, Xiaohui;Chen, Xu;Chen, Haofeng
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • Uniaxial ratcheting behavior of Z2CND18.12N austenitic stainless steel used nuclear power plant piping material was studied. The results indicated that ratcheting strain increased with increasing of stress amplitude under the same mean stress and different stress amplitude, ratcheting strain increased with increasing of mean stress under the same stress amplitude and different mean stress. Based on least square method, a suitable method to arrest ratcheting by loading the materials was proposed, namely determined method of zero ratcheting strain rate. Zero ratcheting strain rate occur under specified mean stress and stress amplitudes. Moreover, three dimensional ratcheting boundary surface graph was established with stress amplitude, mean stress and ratcheting strain rate. This represents a graphical surface zone to study the ratcheting strain rates for various mean stress and stress amplitude combinations. The graph showed the ratcheting behavior under various combinations of mean and amplitude stresses. The graph was also expressed with the help of experimental results of certain sets of mean and stress amplitude conditions. Further, experimentation cost and time can be saved.

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF

Evaluation of Korea`s Sustainable Development by the System Ecology(I)-EMERGY Analysis of Korea`s Natural Environment and Economic Activity- (시스템 생태학적 접근법에 의한 한국의 지속적인 발전가능성 평가(I)-한국의 자연환경과 경제활동에 대한 EMERGY 평가-)

  • 이석모;손지호;강대석
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.449-454
    • /
    • 2000
  • Sustainable development has been the key concept, both in economic policies and in environmental management. On the basis of an systems ecology perspective, this suggests the sustainable development of Korea\`s natural environment and economic activity using the EMERGY evaluation. The total EMERGY use(7,730E20sej/yr) in Korea is 81 percent from imported sources, fuels and goods and services. The ratio of outside investment to attracting natural resources is already large, like other industrialized countries. Continued availability of purchased inputs at a favorable balance of EMERGY trade, currently about 2.85 to 1 net EMERGY, tis the basis for present economic activity and must decrease as the net EMERGY of purchased inputs including fossil fuels goes down. EMERGY yield ratio and environmental loading ratio were 1.23 and 20.30, respectively. The population level is already in excess of carrying capacity. Its carrying capacity for steady state on its renewable sources is only 2.2 million people, compared to 45.9 million in 1977. EMERGY sustainability index is therefore less than one, which is indicative of highly developed consumer oriented economies. Until now the development of a country has been achieved by the economic growth, but it can be sustained in the long run by the use of renewable resource systems. the efficiency of energy usage, and the transformation of the social-economic structure based on an ecological-recycling concept.

  • PDF

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

Methanol oxidation behaviors of PtRu nanoparticles deposited onto binary carbon supports for direct methanol fuel cells

  • Park, Soo-Jin;Park, Jeong-Min;Lee, Seul-Yi
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this study, PtRu nanoparticles deposited on binary carbon supports were developed for use in direct methanol fuel cells using carbon blacks (CBs) and multi-walled carbon nanotubes (MWCNTs). The particle sizes and morphological structures of the catalysts were analyzed using X-ray diffraction and transmission electron microscopy, and the PtRu loading content was determined using an inductively coupled plasma-mass spectrometer. The electrocatalytic characteristics for methanol oxidation were evaluated by means of cyclic voltammetry with 1 M $CH_3OH$ in a 0.5 M $H_2SO_4$ solution as the electrolyte. The PtRu particle sizes and the loading level were found to be dependent on the mixing ratio of the two carbon materials. The electroactivity of the catalysts increased with an increasing MWCNT content, reaching a maximum at 30% MWCNTs, and subsequently decreased. This was attributed to the introduction of MWCNTs as a secondary support, which provided a highly accessible surface area and caused morphological changes in the carbon supports. Consequently, the PtRu nanoparticles deposited on the binary support exhibited better performance than those deposited on the single support, and the best performance was obtained when the mass ratio of CBs to MWCNTs was 70:30.

The Critical Repeated Stress and Behavior of the Isotropic Normally Consolidated Clays Subjected to Repeated Loads. (반복하중을 받는 등방정친압밀점토의 거동 및 한계반복응력)

  • 김팔규;송전섭
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.43-52
    • /
    • 1988
  • The behavior of clays subjected to Repeated loading has been shown to be very different from the behavior under a single load application. Especially the behavior of pore water pressure is Qf considerable importance. The objective of this work is to experimentally study the stress-strain characteristics of clays, and this study includes the pore water pressure which is built up during the load repetition. For this study, the samples were consolidated isotropically in the triaxial cell during 24 hours, .and monotonic strain controlled triaxial test is carried out by uslng the tests of Compression failure, Cycled at failure, and Nonfailure equilibrium on remoulded samples under undrained .condition . Consequently there exists a critical level of repeated loading which seperates the behavior of a particular sample into two distinctly different patterns.

  • PDF

A Study on the Application of Total Pollution Load Management System for Water Quality Improvement in Agriculture Reservoir (농업용 호소의 수질개선을 위한 오염총량관리제의 적용에 관한 연구)

  • Oh, Dae-Min;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.365-375
    • /
    • 2009
  • Agriculture reservoirs need a systematic approach that can control water purity and water improvement. The area under study, Bunam Lake exceeds the agricultural water standard level due to contamination from the upper stream. When the Taean Enterprise City was planned, the water quality improvement plan was applied to minimize the environmental change. However, in order to continuously maintain the water quality in the Bunam Lake, it was essential to apply the Total Pollution Load Management System (TPLMs). In order to achieve the targeted water quality in the Bunam Lake, standard flow rates and targeted water quality levels were applied to obtain the loading capacity which is as follows : BOD 1,891.2 kg/d, T-N 1,945.7 kg/d, T-P 131.7 kg/d. Also, the regional development load was calculated as, BOD 1,083.6 kg/d, T-N 942.2 kg/d, T-P 61.8 kg/d, which is required to be deceased :- by BOD 378.4 kg/d, T-N 198.9 kg/d, T-P 31.6 kg/d in order to safely achieve the targeted water quality in the Bunam Lake.