• Title/Summary/Keyword: loading level

Search Result 1,190, Processing Time 0.026 seconds

The Characteristic of Swelling Index Evaluated by CRS Consolidation Test (일정변형속도(CRS) 압밀시험에 의한 팽창지수 산정 특성)

  • 한상재;김수삼;김병일;이응준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.311-317
    • /
    • 2003
  • The swelling index of clayey soil was examined by constant rate of strain(CRS) consolidation test. Four kinds of strain rate were applied during unloading. The strain rates are l/l, l/5, 1/10, l/l 5 of loading. The strain rates during loading are 0.05%/min and 0.03%/min. From the test results using standard consolidometer, the swelling indexes were much similar values in case of 1/5 or 1/10 of the strain rate during loading stage. In the relation between effective stress and excess pore water pressure ratio, it was found that the existence of cross point and the stress level can be separated into two zones according to the swelling index.

Quantitative Study on Threshold Condition of Critical Non-propagating Crack (임계정류피로크랙의 하한계 전파조건의 정량적 고찰)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF

Comparison of Traction Motor design and characteristics for battery driven hybrid tram (무가선 트램용 추진 전동기 설계 및 특성 비교)

  • Ham, Sang-Hwan;Kim, Kwang-Soo;Kim, Mi-Jung;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

A study on the ice and snow loading condition in Taebaek and Sabuk area in Gangwon province for the construction of KEPCO 765kV transmission lines (한전 765 kV 송전선로 건설을 위한 강원도 태백.사북지역 착빙설 하중조건 검토)

  • Park, K.H.;Kim, Y.W.;Won, B.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1923-1924
    • /
    • 1996
  • Some part of the route in KEPCO 765kV transmission line being constructed passes through a high mountain area which is 800m above the sea level (Taebaek, Sabuk area in Gangwon province). This area is the top part of Taebaek mountains corresponding to the backbone of korean peninsula and has lots of snow during the winter season because the winter seasonal wind gone up along the mountainside of Taebaek Mts. meets open air of the East sea. KEPCO has experienced 63 faults of T/L between 1968 and 1993 in this area, which is a very serious problem. Especially 154kV Hwang-Ji T/L fault in 1990, 2 was a unprecedented case which needs to be analyzed carefully to take proper measures. After reviewing ice and snow loading conditions and analyzing the fault of Hwang-Ji T/L, we're going to determine the revisement of ice and snow loading condition in this area to increase reliability of 765kV transmission line.

  • PDF

Undrained cyclic shear characteristics and crushing behaviour of silica sand

  • Wu, Yang;Hyodo, Masayuki;Aramaki, Noritaka
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents an investigation of the liquefaction characteristics and particle crushing of isotropically consolidated silica sand specimens at a wide range of confining pressures varying from 0.1 MPa to 5 MPa during undrained cyclic shearing. Different failure patterns of silica sand specimens subjected to undrained cyclic loading were seen at low and high pressures. The sudden change points with regard to the increasing double amplitude of axial strain with cycle number were identified, regardless of confining pressure. A higher cyclic stress ratio caused the specimen to liquefy at a relatively smaller cycle number, conversely producing a larger relative breakage $B_r$. The rise in confining pressure also resulted in the increasing relative breakage. At a specific cyclic stress ratio, the relative breakage and plastic work increased with the rise in the cyclic loading. Less particle crushing and plastic work consumption was observed for tests terminated after one cyclic loading. Majority of the particle crushing was produced and majority of the plastic work was consumed after the specimen passed through the phase transformation point and until reaching the failure state. The large amount of particle crushing resulted from the high-level strain induced by particle transformation and rotation.

유기점토를 이용한 다환방향족 오염물과 중금속의 흡착특성 연구

  • 이승엽;김수진;정상용
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.434-437
    • /
    • 2003
  • The fate and the behavior of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants in the environment. In our experiment, PAH sorption by hexadecyltrimethylammonium (HDTMA)-modified smectite linearly increased in proportion to the amount of HDTMA added on the clay. However, trimethylammonium (TMA)-modified smectite did not show superiority in its sorption of PAH compared with the HDTMA-smectite or dodecyltrimethylammonium (DTMA)-smectite. Meanwhile, the smectites modified with the same cationic surfactants adsorbed Cd$^{2+}$ (heavy metal) significantly from water at low surfactant loading level, but the Cd$^{2+}$ adsorption linearly decreased as the loading of surfactant increased. The result shows that the sorption tendency of organoclays for organic or inorganic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. It means that the stabilization and configuration of cationic surfactant formed on the clay interlayer according to the loading amount of each surfactant of different sizes may be an important factor in effectively sorbing environmental pollutants.nts.

  • PDF

Durability of Corrugated Fiberboard Container for Fruit and Vegetables by Vibration Fatigue at Simulated Transportation Environment (모의 수송 환경에서의 청과물 골판지 상자의 진동 피로에 따른 내구성)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.89-94
    • /
    • 2005
  • The compression strength of corrugated fiberboard container for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about from 30 to 40 percent owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard container for packaging the fruit and vegetables under simulated transportation environment. The vibration test system was constructed to simulate the land transportation using truck. After the package with corrugated fiberboard container was vibrated by vibration test system at various experimental conditions, the compression test for the package was performed. The compression strength of corrugated fiberboard container decreased with loading weight and vibrating time. The multiple nonlinear regression equation for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibrating time. The influence of loading weight on the decreasing rate of corrugated fiberboard container was larger than other variables.

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading

  • Wang, Lixiao;Chen, Qidong;Liu, Xin;Zhang, Bin;Shen, Yichen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2020
  • Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.

Responses of structure to impulsive loading with application of viscoplasticity (점소성론을 이용한 구조물의 충격응답 해석)

  • 김상환
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.59-66
    • /
    • 1995
  • The dynamic responses of structure under impulsive loading have been investigated according to its duration, based on the theory of viscoplasticity which can appropriately represent the effects of plasticity and rheology simultaneously. The viscoplastic model has been implemented into the two-dimensional finite element system to solve plane stress, plane strain or axi-symmetric problems, and the implicit integration scheme, of which solutions are unconditionally stable for relatively large time step length, has been developed to simulate visoplastic straining with deriving the explicit relationship between stress and strain at a material point level. After simulation, one carefully concludes that the duration as well as magnitude of impulsive loading plays an important role in design of structures.

  • PDF