Browse > Article
http://dx.doi.org/10.12989/cac.2020.26.1.011

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading  

Wang, Lixiao (School of Mechanical Engineering, Changshu Institution of Technology)
Chen, Qidong (School of Mechanical Engineering, Changshu Institution of Technology)
Liu, Xin (School of Mechanical Engineering, Changshu Institution of Technology)
Zhang, Bin (School of Mechanical Engineering, Changshu Institution of Technology)
Shen, Yichen (School of Mechanics, Soochow University)
Publication Information
Computers and Concrete / v.26, no.1, 2020 , pp. 11-20 More about this Journal
Abstract
Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.
Keywords
concrete; ultrasonic; random aggregate model; damage plastic; numerical simulation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Xiang, Y., Fang, Z. and Fang, Y.W. (2017), "Single and multiple impact behavior of CFRP cables under pretension", Constr. Build. Mater., 140, 521-533. https://doi.org/10.1016/j.conbuildmat.2017.02.112.   DOI
2 Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling", Constr. Build. Mater., 68, 158-171. https://doi.org/10.1016/j.conbuildmat.2014.06.033.   DOI
3 Zhang, J., Li, J. and Woody, J. (2016), "3D elastoplastic damage model for concrete based on novel decomposition of stress". Int. J. Solid. Struct., 94-95, 125-137. https://doi.org/10.1016/j.ijsolstr.2016.04.038.   DOI
4 Zhang, Z.H., Cao, F., Yang, J.Y. and He, Z.G. (2018), "Experiment on natural frequency change of reinforced concrete members under low cycle loading", Shock Vib., 2018, 6504519. https://doi.org/10.1155/2018/6504519.
5 Zhou, W., Tang, L.W., Liu, X.H., Ma, G. and Chen, M.X. (2016), "Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model". Int. J. Impact Eng., 95, 165-175. https://doi.org/10.1016/j.ijimpeng.2016.05.003.   DOI
6 Kalinowska, W.K., Pawluczuk, E. and Boltryk, M. (2020), "Waste-free technology for recycling concrete rubble", Constr. Build. Mater., 234, UNSP 117407. https://doi.org/10.1016/j.conbuildmat.2019.117407.
7 Kwak, H.G. and Gang, H.G. (2015), "An improved criterion to minimize FE mesh-dependency in concrete structures under high strain rate conditions", Int. J. Impact Eng., 86, 84-95. https://doi.org/10.1016/j.ijimpeng.2015.07.008.   DOI
8 Kaliyavaradhan, S.K. and Ling, T.C. (2017), "Potential of CO2 sequestration through construction and demolition (C&D) waste -An overview", J. $CO_2$ Utiliz., 20, 234-242. https://doi.org/10.1016/j.jcou.2017.05.014.   DOI
9 Kim, J.R., Kwak, H.G. and Kim, B.S. (2019), "Finite element analyses and design of post-tensioned anchorage zone in ultra-high-performance concrete beams", Adv. Struct. Eng., 22(2), 323-336. https://doi.org/10.1177/1369433218787727.   DOI
10 Kim, K., Bolander, J.E. and Lim, Y.M. (2013), "Failure simulation of RC structures under highly dynamic conditions using random lattice models", Comput. Struct., 125, 127-136. https://doi.org/10.1016/j.compstruc.2013.04.007.   DOI
11 Li, Y., Algassem, O. and Aoude, H. (2018), "Response of high-strength reinforced concrete beams under shock-tube induced blast loading", Constr. Build. Mater., 189, 420-437. https://doi.org/10.1016/j.conbuildmat.2018.09.005.   DOI
12 Liang, S.X., Chen, J.S., Li, J., Lin, S.P., Chi, S.W., Hillman, M., Roth, M. and Heard, W. (2017), "Numerical investigation of statistical variation of concrete damage properties between scales", Int. J. Fract., 208(1-2), 97-113. https://doi.org/10.1007/s10704-017-0217-z.   DOI
13 Liu, H.F. and Ning, J.G. (2009), "Mechanical behavior of reinforced concrete subjected to impact loading", Mech. Mater., 41(12), 1298-1308. https://doi.org/10.1016/j.mechmat.2009.05.008.   DOI
14 Nakahata, K., Kawamura, G., Yano, T. and Hirose, S. (2015), "Three-dimensional numerical modeling of ultrasonic wave propagation in concrete and its experimental validation", Constr. Build. Mater., 78, 217-223. https://doi.org/10.1016/j.conbuildmat.2014.12.049.   DOI
15 Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. http://dx.doi.org/10.12989/cac.2016.18.2.155.   DOI
16 Abyaneh, S.D., Wong, H.S. and Buenfeld, N.R. (2013), "Modelling the diffusivity of mortar and concrete using a three-dimensional mesostructure with several aggregate shapes", Comput. Mater. Sci., 78, 63-73. https://doi.org/10.1016/j.commatsci.2013.05.024.   DOI
17 Liu, H.F., Fu, J. and Ning, J.G. (2016), "Experimental study on the dynamic mechanical properties of reinforced concrete under shock loading", Acta Mechanica Solida Sinica, 29(1), 253-261. https://doi.org/10.1016/S0894-9166(16)60004-6.
18 Liu, H.K., Ren, X.D., Liang, S.X. and Li, J. (2019), "Physical mechanism of concrete damage under compression", Mater. (Basel, Switzerland), 12(20), 3295. https://doi.org/10.3390/ma12203295.
19 Lotfi, S., Eggimann, M., Wagner, E., Mroz, R. and Deja, J. (2015), "Performance of recycled aggregate concrete based on a new concrete recycling technology", Constr. Build. Mater., 95, 243-256. https://doi.org/10.1016/j.conbuildmat.2015.07.021.   DOI
20 Matzenmiller, A., Lubliner, J. and Taylor, R.L. (1995), "A constitutive model for anisotropic damage in fiber-composites", Mech. Mater., 20(2), 125-152. https://doi.org/10.1016/0167-6636(94)00053-0.   DOI
21 Nam, J.W., Choi, H.J., Kim, J.H.J., Kim, I.S., Yi, N.H. and Kim, H.J. (2009), "Blast analysis of concrete arch structures for FRP retrofitting design", Comput. Concrete, 6(4), 305-318. https://doi.org/10.1016/j.conbuildmat.2014.12.049.   DOI
22 Saleem, M. and Nasir, M. (2016), "Bond evaluation of steel bolts for concrete subjected to impact loading", Mater. Struct., 49(9), 3635-3646. https://doi.org/10.1617/s11527-015-0745-9.   DOI
23 Salesa, A., Perez, B.J.A., Esteban, L.M., Vicente, V.R. and Orna, C.M. (2017), "Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects", Constr. Build. Mater., 153, 364-373. https://doi.org/10.1016/j.conbuildmat.2017.07.087.   DOI
24 Bazant, Z.P. and Tabbara, M.R. (1990), "Random particle models for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).   DOI
25 Al-Salloum, Y., Almusallam, T., Ibrahim, S.M., Abbas, H. and Alsayed, S. (2015), "Rate dependent behavior and modeling of concrete based on SHPB experiments", Cement Concrete Compos., 55, 34-44. https://doi.org/10.1016/j.cemconcomp.2014.07.011.   DOI
26 Alexandre, B.J. and Gomes, A. (2013), "Compressive behavior and failure modes of structural lightweight aggregate concrete - Characterization and strength prediction", Mater. Des., 46, 832-841. https://doi.org/10.1016/j.matdes.2012.11.004.   DOI
27 Anil, O., Durucan, C., Erdem, R.T. and Yorgancilar, M.A. (2016), "Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading", Constr. Build. Mater., 125, 94-104. https://doi.org/10.1016/j.conbuildmat.2016.08.028.   DOI
28 Aoude, H., Dagenais, F.P., Burrell, R.P. and Saatcioglu, M. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under blast loading", Int. J. Impact Eng., 80, 185-202. https://doi.org/10.1016/j.ijimpeng.2015.02.006.   DOI
29 Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.   DOI
30 Cao, L., Liu, J.P. and Chen, Y.F. (2018), "Vibration performance of arch prestressed concrete truss girder under impulse excitation", Eng. Struct., 165, 386-395. https://doi.org/10.1016/j.engstruct.2018.03.050.   DOI
31 Chen, J.Q., Wang, H. and Li, L. (2017), "Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures", Int. J. Pave. Eng., 9(18), 824-836. https://doi.org/10.1080/10298436.2015.1066005.   DOI
32 Tehrani, F.F., Absi, J., Allou, F. and Petit, C. (2013), "Investigation into the impact of the use of 2D/3D digital models on the numerical calculation of the bituminous composites' complex modulus", Comput. Mater. Sci., 79, 377-389. https://doi.org/10.1016/j.commatsci.2013.05.054.   DOI
33 Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray mu CT images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010.   DOI
34 Smith, J., Cusatis, G., Pelessone, D., Landis, E., O'Daniel, J. and Baylot, J. (2014), "Discrete modeling of ultra-high-performance concrete with application to projectile penetration", Int. J. Impact Eng., 65, 13-32. https://doi.org/10.1016/j.ijimpeng.2013.10.008.   DOI
35 Tahmouresi, B., Koushkbaghi, M., Monazami, M., Abbasi, M.T. and Nemati, P. (2019), "Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete", Comput Concrete, 24(3), 193-206. https://doi.org/10.12989/cac.2019.24.3.193.   DOI
36 Wang, X.F., Yang, Z.J. and Jivkov, A.P. (2015), "Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study", Constr. Build. Mater., 80, 262-272. https://doi.org/10.1016/j.conbuildmat.2015.02.002.   DOI
37 Wang, X.F., Yang, Z.J. and Yates, J.R. (2015), "Jivkov, AP. Zhang, C. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores", Constr. Build. Mater., 75, 35-45. https://doi.org/10.1016/j.conbuildmat.2014.09.069.   DOI
38 Wittmann, F.H. and Roelfstra, P.E. (1988), "Drying of concrete: An application of the 3L approach", Nucl. Eng. Des., 105, 185-198. https://doi.org/10.1016/0029-5493(88)90339-1.   DOI
39 Chen, J.Q., Wang, H., Dan, H.C. and Xie, Y.J. (2018), "Random modeling of three-dimensional heterogeneous microstructure of asphalt concrete for mechanical analysis", J. Eng. Mech., 9, 144. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001505.
40 Wu, J., Ning, J.G. and Ma, T.B. (2017), "The dynamic response and failure behavior of concrete subjected to new spiral projectile impacts", Eng. Fail. Anal., 79, 547-564. https://doi.org/10.1016/j.engfailanal.2017.05.037.   DOI
41 Du, X.L., Jin, L. and Ma, G.W. (2014), "Numerical simulation of dynamic tensile-failure of concrete at meso-scale", Int. J. Impact Eng., 66, 5-17. https://doi.org/10.1016/j.ijimpeng.2013.12.005.   DOI
42 Heravi, A.A., Curosu, I. and Mechtcherine, V. (2020), "A gravity-driven split Hopkinson tension bar for investigating quasi-ductile and strain-hardening cement-based composites under tensile impact loading", Cement Concrete Compos., 105, UNSP 103430. https://doi.org/10.1016/j.cemconcomp.2019.103430
43 Ganesan, N., Raj, J.B. and Shashikala, A.P. (2013), "Flexural fatigue behavior of self compacting rubberized concrete", Constr. Build. Mater., 44, 7-14. https://doi.org/10.1016/j.conbuildmat.2013.02.077.   DOI
44 Gholipour, G., Zhang, C.W. and Mousavi, A.A. (2019), "Loading rate effects on the responses of simply supported RC beams subjected to the combination of impact and blast loads", Eng. Struct., 201, 109837. https://doi.org/10.1016/j.engstruct.2019.109837.   DOI
45 Gultop, T., Yilmaz, M.C. and Alyavuz, B. (2015), "An analytical investigation of rigid plastic beams under impact loading", J. Facul. Eng. Arch. Gazi Univ., 1(30), 87-94.
46 Huang, Y.J., Yang, Z.J., Ren, W.Y., Liu, G.H. and Zhang, C.Z. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solid. Struct., 67-68, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.   DOI
47 Jin, R.Y. and Chen, Q. (2019), "Overview of concrete recycling legislation and practice in the United States", J. Constr. Eng. Manage., 4, 145. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001630.