• 제목/요약/키워드: loading head

검색결과 173건 처리시간 0.025초

Development of an Apparatus for Vertical Transfer of a PRT Vehicle Operating on a Road Network (운행 중인 PRT 차량의 수직이송을 위한 장치 개발)

  • Kang, Seok-Won;Um, Ju-Hwan;Jeong, Rag-Gyo;Kim, Jong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권6호
    • /
    • pp.2604-2611
    • /
    • 2013
  • The Personal Rapid Transit(PRT) system has been highly interested in future transportation developments due to its on-demand and optimized door-to-door transport capability. However, the major impediments to the commercialization of PRT are the high cost for construction of infrastructures as opposed to the small transport capacity and difficulty in defining the role of PRT in building a balanced transportation system. In this study, the vertical transfer device for the PRT vehicle is developed to provide more flexible and better compatible urban mobility services between means of transportation, which is expected to meet particular demands in a particular environment. This apparatus was initially designed based on the basis of vertical circulating conveyors with steel chains, which is frequently used in logistics. Its advantages are capable of the non-stop loading and reduced head-way time. Most importantly, it was intensified by the additional idea to ensure the stable and reliable transfer of the PRT vehicle fully loaded with passengers. The 1/10-scale prototype was successfully tested to demonstrate a fundamental mechanism of vertical transfer and identify unexpected user requirements prior to a real manufacturing process.

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • 제7권6호
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

Dislodgement resistance of modified resin-bonded fixed partial dentures utilizing tooth undercuts: an in vitro study

  • Doh, Re-Mee;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.85-90
    • /
    • 2009
  • STATEMENT OF PROBLEM. Over the years, resin-bonded fixed partial dentures (RBFPDs) have gone through substantial development and refinement. Several studies examined the biomechanics of tooth preparation and framework design in relation to the success rate of RBFPDs and considered retention and resistance form essential for increase of clinical retention. However, these criteria required preparations to be more invasive, which violates not only the original intentions of the RBFPD, but may also have an adverse effect on retention due to loss of enamel, an important factor in bonding. PURPOSE. The object of this in vitro study was to compare the dislodgement resistance of the new types of RBFPDs, the conventional three-unit fixed partial denture, and conventional design of RBFPD (Maryland bridge). MATERIAL AND METHODS. Fifty resin mandibular left second premolars and second molars were prepared on dentiforms, according to the RBFPD design. After model fabrication (five group, n = 10), prostheses were fabricated and cemented with zinc phosphate cement. After cementation, the specimens were subjected to tensile loading at a cross head speed of 4 mm/min in a universal testing machine. The separation load was recorded and analyzed statistically using one-way analysis of variance followed by Duncan's multiple range test. RESULTS. Group V, the pin-retained RBFPDs, had the highest mean dislodgement resistance, whereas specimens of group II, the conventional RBFPDs, exhibited a significantly lower mean dislodgement resistance compared to the other 4 groups (P <.05). There were no significant differences between group I, III, and IV in terms of dislodgement resistance (P>.05). Group V had the highest mean MPa (N/$mm^2$) (P <.05). There was no significant difference between groups I, II, III and IV (P > .05). CONCLUSION. Within the limits of the design of this in vitro study, it was concluded that: 1. The modified RBFPDs which utilizes the original tooth undercuts and requires no tooth preparation, compared with the conventional design of RBFPDs, has significantly high dislodgement resistance (P < .05). 2. The modified RBFPDs which utilizes the original tooth undercuts and requires minimal tooth preparation, compared with the conventional FPDs, has significantly no difference in retention and dislodgement resistance)(P>.05). 3. The pin-retained FPDs showed a high dislodgement resistance compared to the conventional three-unit FPDs (P<.05).

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • 제5권1호
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head (해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향)

  • Jung, Sungmoon;Kim, Sung-Ryul;Lee, Juhyung;Le, Chi Hung
    • Journal of the Korean Geosynthetics Society
    • /
    • 제13권4호
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제32권2호
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권6C호
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

Exposure and Risk Assessment for Operator Exposure to Insecticide Acetamiprid during Water Melon Cultivation in Greenhouse using Whole Body Dosimetry (수박 시설재배에서 살충제 Acetamiprid 사용 시 전신노출법에 의한 농작업자의 노출 및 위해성평가)

  • Kim, Eunhye;Lee, Jiho;Sung, Jeonghee;Lee, Jonghwa;Shin, Yongho;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • 제18권4호
    • /
    • pp.247-257
    • /
    • 2014
  • Assessment for operator's dermal and inhalation exposure to acetamiprid during cultivation of water melon in greenhouse was carried out. For dermal exposure measurement, whole body dosimetry (WBD) was performed as the first trial in Korea. WBD consists of cotton/polyester outer clothes and cotton inner clothes. Hand exposure was measured by washing of nitrile gloves and hands while head exposure was monitored by face/neck wipe technique. Inhalation exposure was monitored with personal air sampling pumps and IOM sampler (glass fiber filter). Analytical limit of quantitation was 2.5 ng/mL. Good reproducibility (C.V < 8.7%), linearity ($R^2$ > 0.99) and recovery (70~119%) were obtained. Field recovery of acetamiprid was 77~95%. During mixing/loading, hand exposure of acetamiprid was about 10 times ($229.7{\mu}g$) more than that of application case ($20.9{\mu}g$). During application, total dermal exposure was $1207.4{\mu}g$. Exposure of lower legs was $1132.1{\mu}g$, which is 93.8% of the total dermal exposure. Inhalation exposure during mixing/loading and application was not detected. Margin of safety (MOS) was calculated for risk assessment using male Korean average body weight (70 kg) and acceptable operator exposure level ($124{\mu}g/kg/day$) to give 140, suggesting that health risk of operator during treatment of acetamiprid for water melon in greenhouse could be safe.

Pollutant Loading and Changes of the Self - Purification Capacity with Season in Gokneung Stream Ecosystem (곡릉천 생태계의 오염부하량과 계절에 따른 자정능의 변화)

  • 이선경;심규철;김재영;김준민;장남기
    • The Korean Journal of Ecology
    • /
    • 제17권3호
    • /
    • pp.355-366
    • /
    • 1994
  • The purpose of this study was to investigate the changes of water quality and the patterns of self-purification with season in Gokneung stream. The vegetation in the ecosystem around Gokneung stream was dominated by Quercus species. In the physicochemical analysis based on the contents of DO, BOD, conductivity and total phosphorus, the upstream seemed to have been polluted, but the downstream was self-purified. In biological investigation by bentic macroinvertebrates, the result was similar to that in the physicochemical analysis. The self-purification constant based on BOD of the upstream, 1.013, was the highest. In the self-purification constants with month, that of September was 0.995 and that of January was 0.272. These results indicated that the self purification capacities of spring and autumn were larger than those of winter and summer in Gokneung stream.

  • PDF

A Comparative Study on the Retention of Implant Overdenture According to the Shape and the Number of Magnetic Attachment (자성 어태치먼트의 형태와 수에 따른 하악 임플란트 피개의치의 유지력에 대한 비교 연구)

  • Seo, Min-Ji;Lee, Joon-Seok;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제24권2호
    • /
    • pp.169-181
    • /
    • 2008
  • The aim of this study was to compare the retention and stability of implant overdenture according to the shape and the number of magnetic attachment. The experimental groups were designed for the number of implants(1, 2, 4) and shape of magnetic attachments(flat, cushion, dome type) resulting in 9 subgroups. 45 attachments were tested attached to $Br{\aa}nemark$ system implants which were planted on a mandibular model. Each attachment was composed of the magnet assembly embedded in a overdenture sample and the abutment keeper screwed into the implants. Dislodging tensile forces were applied to the overdenture samples using an Instron(cross-head speed 50.80mm/min) in 3 directions simulating function: vertical, oblique, and anterior-posterior. The loading was repeated 10 times in each direction for 45 samples. The values of maximum dislodging force of each subgroup were processed statistically using SPSS V. 12.0 at the 0.05 level of significance. The results of this study were as follows: 1. Flat type magnetic overdenture was the most retentive when subjected to vertically directed forces and dome type was the lest retentive when subjected to obliquely directed forces(p<0.05). 2. In case of planting one implant, flat type had a higher vertically retentive force than anterior-posteriorly retentive force. In case of planting two implants, flat type and dome type had a higher vertically retentive force and in case of planting four implants, flat type and cushion type had a higher vertically retentive force than anterior-posteriorly retentive force(p<0.05). 3. The incremental number of dental implant, without regards to the three types of magnetic attachment shapes, showed higher retention of overdenture(p<0.05). From the results, if a patient need much more retention of implant overdenture, flat type magnetic overdenture would be a good treatment. In case of the bruxism where excessive lateral forces are already present, dome type could be expected to produce better results. In case of planting one implant, flat type is more stable than the other shape of magnet and in case of two implant, flat type and dome type are more stable and in case of four implants, flat type and cushion type are more stable. Planting more than two implants and using flat type magnetic attachment would provide better retention and stability of implant overdenture