• Title/Summary/Keyword: loading duration

Search Result 172, Processing Time 0.024 seconds

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

Application of Load Duration Curve and Estimation of Delivery Ratio by Flow Durations Using Discharge-Load Rating Curve at Jiseok Stream Watershed (유량-부하량관계식을 이용한 지석천 유역의 부하지속곡선 적용 및 유황별 유달율 산정)

  • Park, Jinhwan;Kim, Kapsoon;Hwang, Kyungsup;Lee, Yongwoon;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2013
  • This study has been carried out to clarify the characteristics of discharge and pollutant loading according to flow conditions at jiseok stream watershed (JSW). A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. By using the methods above, I've evaluated the water quality (WQ) of the JSW if it is satisfied with the standard target. I've collected the data of BOD and T-P from the JSW every 8 days for the duration of 12 months. And then, I've schematized the data upon the load duration curve and the results showed me that the WQ of JSW was satisfied with the standard target. I've also collected the same data every each day for the duration of 12 months from JSW and have schematized the data again. And the results showed that it also was satisfied with the standard target. To be concluded, I've determined that point pollution sources of JSW gives more significant impacts to the WQ than non-point pollution sources of JSW and hence, as time goes, point pollution sources will keep depriciating the WQ of JSW. Therefore, further efforts will be required to JSW to maintain the WQ.

Debonding failure analysis of FRP-retrofitted concrete panel under blast loading

  • Kim, Ho Jin;Yi, Na Hyun;Kim, Sung Bae;Nam, Jin Won;Ha, Ju Hyung;Kim, Jang-Ho Jay
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.479-501
    • /
    • 2011
  • Even though fiber reinforced polymer (FRP) has been widely used as a retrofitting material, the FRP behavior and effect in FRP retrofitted structure under blast loading, impulsive loading with instantaneous time duration, has not been accurately examined. The past studies have focused on the performance of FRP retrofitted structures by making simplifications in modeling, without incorporating accurate failure mechanisms of FRP. Therefore, it is critical to establish an analytical model that can properly consider the specific features of FRP material in evaluating the response of retrofitted concrete structures under blast loading. In this study, debonding failure analysis technique for FRP retrofitted concrete structure under blast loading is suggested by considering FRP material characteristics and debonding failure mechanisms as well as rate dependent failure mechanism based on a blast resisting design concept. In addition, blast simulation of FRP retrofitted RC panel is performed to validate the proposed model and analysis method. For validation of the proposed model and analysis method, the reported experimental results are compared with the debonding failure analysis results. From the comparative verification, it is confirmed that the proposed analytical model considering debonding failure of FRP is able to reasonably predict the behavior of FRP retrofitted concrete panel under blast loading.

PREDICTION OF COMBINED SEWER OVERFLOWS CHARACTERIZED BY RUNOFF

  • Seo, Jeong-Mi;Cho, Yong-Kyun;Yu, Myong-Jin;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.62-70
    • /
    • 2005
  • Pollution loading of Combined Sewer Overflows (CSOs) is frequently over the capacity of a wastewater treatment plant (WWTP) receiving the water. The objectives of this study are to investigate water quality of CSOs in Anmyun-ueup, Tean province and to apply Storm Water Management Model to predict flow rate and water quality of the CSOs. The capacity of a local WWTP was also estimated according to rainfall duration and intensity. Eleven water quality parameters were analyzed to characterize overflows. SWMM model was applied to predict the flow rate and pollutant load of CSOs during rain event. Overall, profile of the flow and pollutant load predicted by the model well followed the observed data. Based on model prediction and observed data, CSOs frequently occurs in the study area, even with light precipitation or short rainfall duration. Model analysis also indicated that the local WWTP’s capacity was short to cover the CSOs.

Estimation of Settlement Caused by Lateral Displacement by Means of the Differences of Settlements from Consolidation Theory and Field Measurement (압밀이론에 의한 침하량과 현장계측 침하량의 차에 의한 측방유동 침하량 산정)

  • Kang, Min-Soo;Jeon, Sang-Ok;Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.59-68
    • /
    • 2009
  • In this study, it was developed that the software could be used to estimate consolidation settlement by curve fitting method according to Terzaghi's consolidation theory on the condition of gradual incremental loading, and the method of estimating settlement caused by lateral displacement was suggested, in which the settlement was calculated from the difference between the settlement calculated with the developed software using the early part of measured data and the settlement measured for the short duration from the beginning of embankment in the field. The verification of the suggested method of estimating settlement caused by lateral displacement showed good results.

Damage Prediction of Reinforced Concrete Structures due to Ground Motion (지반진동으로 인한 R/C 구조물의 손상에 관한 연구)

  • Rhim, Hong-Chul;Kim, Ji-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • Urbanization and development of industry makes people concerned about quality of circumstances. Problems of vibration are on the rise. Vibration makes inhabitants feel unpleasant and involves structural damage. The purpose of this study is to assess damage of reinforced concrete structures due to ground motions as the parameters of frequency, duration time and aspect ratio of structures are changed. Ground motions were modeled as sine waves. To compare sine waves with real ground motions, two cases are selected; one is blast loading case and the other is earthquake loading. It was intended to provide means to assess R/C structure damage due to ground motions.

Development of a Fatigue Index Based on the Measurement of Localized Muscular Fatigue During the Cyclic Isometric Contraction (주기적 등척성 수축에서의 국소근육피로 측정을 통한 피로지수의 개발)

  • Jung, So-Ra;Chung, Min-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.87-96
    • /
    • 1993
  • Spectrum analysis of surface electromyogram (FMG) signals is an effective approach to the study of localized muscular fatigue during isometric contraction. Many investigators have con firmed the frequency of the EMG signals being lowered during sustained contaction. In this study, the cyclic loading tasks were performed, and a comparison was made for the median power frequency shift pattern of the EMG signals with the sustained contraction of the same load. The median power frequency shift of the EMG signals for the cyclic loading task was found to be a part of that for the sustained contraction. Based on this result, a new muscle fatigue index was computed by normalizing the duration of the sustained contraction. A fatigue index was obtained as a function of exertion level and the work/rest schedule. With the proposed fatigue index, it is possible to evaluate or predict the degree of muscular fatigue for a physically demanding task.

  • PDF

An experimental study on the flexural performance of laminated glass

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • This paper reported an experimental study on creep behaviors of PVB and Ionoplast laminated glass (LG) under load duration of 30 days. The tests were carried out in room temperature ($23^{\circ}C$). The study revealed that after sustaining loads for 30 days, the mid-span deflection of PVB LG increased by almost 102% compared with its short term deflection, while that of Ionoplast LG approximately increased by 14%; composite effects between two glass plies in PVB LG gradually reduced with time, but did not fully vanish at the 30th day; two glass plies in Ionoplast LG on the other hand was able to withstand loads as an effective composite section during the entire loading period; the creep behaviors of both LG were not finished yet at the 30th day. In addition to this, also studied was the varying of the bending stresses of PVB and Ionoplast LG under load duration of 2 hours. The tests were carried out in ambient temperatures of $30^{\circ}C$, $50^{\circ}C$ and $80^{\circ}C$ respectively. It was found that under a given load, although the bending stresses of both LG increased with increasing temperature, for PVB LG the increasing rate of the bending stress decreased with increasing temperature, while for Ionoplast LG the increasing rate of the bending stress increased with increasing temperature.

A Study on the Duration of Cover in the Institute Cargo Clauses 2009 (2009년 협회적하약관상 보험기간에 관한 연구)

  • Shin, Gun Hoon;Lee, Byung Mun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.59
    • /
    • pp.81-112
    • /
    • 2013
  • This article intends to examine main features of revision in relation to the duration of cover in the Institute Cargo Clauses 2009 and the results of analysis are as followings. First, the cover, which had been "warehouse to warehouse", has been extended to what may be called "shelf to unloading". Thus the insurance attaches when the goods are first moved within the warehouse or place of storage at the named place for the purpose of immediate loading for the commencement of transit. Secondly, the new termination Clause 8.1.3 requires an election by the assured, or their employees, to use a vehicle or container, for storage other than in the ordinary course of transit. Thirdly, Clause 10.1, which deals with the assured's voluntary change of voyage, was amended to solve the problem that the words "held covered" could be misunderstood by an assured without specialist knowledge of English marine insurance law to be a guarantee of cover, even where cover would not be commercially available. Finally, Clause 10.2 is designed to solve the so-called "phantom ship problem", arising from the harsh decision in The Prestrioka. The new Clause 10.2 provides protection for an innocent assured in the situation of a phantom ship.

  • PDF

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.