• Title/Summary/Keyword: loading direction

Search Result 748, Processing Time 0.028 seconds

Effect of thread design on the marginal bone stresses around dental implant (임플란트 나사산 디자인이 변연골 응력에 미치는 영향)

  • Lee, Sang-Hyun;Jo, Kwang-Heon;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of different thread designs on the marginal bone stresses around dental implant. Materials and methods: Standard ITI implant(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland), 4.1 mm in diameter and 10 mm in length, was selected as control. Test implants of four different thread patterns were created based on control implant, i.e. maintaining all geometrical design of control implant except thread pattern. Four thread designs used in test implants include (1) small V-shape screw (model A), (2) large V-shape screw (model B), (3) buttress screw (model C), and (4) trapezoid screw (model D). Surface area for unit length of implant was 14.4 $mm^2$ (control), 21.7 (small V-shape screw), 20.6 (large V-shape screw), 17.0 (buttress screw) and 28.7 $mm^2$ (trapezoid screw). Finite element models of implant/bone complex were created using an axisymmetric scheme with the use of NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA). A load of 100 N applied to the central node on the crown top either in parallel direction or at 30 degree to the implant axis (in order to apply non-axial load to the implant NKTP type 34 element was employed). Quantification and comparison of the peak stress in the marginal bone of each implant model was made using a series of regression analyses based on the stress data calculated at the 5 reference points which were set at 0.2, 0.4, 0.6, 0.8 and 1.0 mm from implant wall on the marginal bone surface. Results: Results showed that although severe stress concentration on the marginal bone cannot be avoided a substantial reduction in the peak stress is achievable using different thread design. The peak marginal bone stresses under vertical loading condition were 7.84, 6.45, 5.96, 6.85, 5.39 MPa for control and model A, B, C and D, respectively. And 29.18, 26.45, 25.12, 27.37, 23.58 MPa when subject to inclined loading. Conclusion: It was concluded that the thread design is an important influential factor to the marginal bone stresses.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

Evaluation for Rock Cleavage Using Distributional Characteristics of Microcracks and Brazilian Tensile Strengths (미세균열과 압열인장강도의 분포 특성을 이용한 결의 평가)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The characteristics of the Brazilian tensile strengths(σt) parallel to the rock cleavages in Jurassic granite from Geochang were analysed. The evaluation for the six directions of rock cleavages was performed using the parameter values on microcrack length and the above strength. The strength values of the five test specimens belonging to each direction were classified into five groups. The strength values of these five groups increase in order of group A < B < C < D < E. The close dependence between the above microcrack and strength was derived. The analysis results of this study are summarized as follows. First, the chart showing the variation and characteristics of strength among the three rock cleavages were made. In the above chart, the strength values of six directions belonging to each group were arranged in order of rift(R1 and R2), grain(G1 and G2) and hardway(H1 and H2). The strength distribution lines of the five groups concentrate in the direction of R1. And the widths among the above five lines indicating strength difference(Δσt) are the most narrowest in R1 direction. From the related chart, the variation characteristics among the two directions forming each rock cleavage were derived. G2(2)-test specimen shows higher value and lower value of the difference in strength compared to the case of G1(1)-test specimen. These kinds of phenomena are the same as the case between the test specimen H2(2) and H1(1). The strength characteristics of the above test specimens (2) suggest lower microcrack density value and higher degree of uniformity in the distribution of microcracks arrayed parallel to the loading direction compared to those of test specimens (1). The six strength values belonging to each group were arranged in increasing order in the above chart. The strength values of the test specimens belonging to both group D and E appear in order of R1 < R2 < G1 < H1 < G2 < H2. Therefore, the strength values of group D and E can be indicator values for evaluating the six directions of rock cleavages. Second, the correlation chart between slope angle(θ) and strength difference(Δσt) were made. The values of the above two parameters were obtained from the five strength distribution lines connecting between the two directions. From the chart related to rift plane(G1-H1, R'), grain plane(R1-H2, G') and hardway plane(R2-G2, H'), the slope values of linear functions increase in order of R'(0.391) < G'(0.470) < H'(0.485). Among three planes, the charts related to hardway plane show the highest distribution density among the five groups. From the related chart for rift(R1-R2, R), grain(G1-G2, G) and hardway(H1-H2, H), the slope values of linear functions increase in order of rift(0.407) < hardway(0.453) < grain(0.460). Among three rock cleavages, the charts related to rift show the highest frequency of groups belonging to the lower region. Taken together, the width of distribution of the slope angle among the three planes and three rock cleavages increase in order of H' < G < R' < R < G' < H. Third, the correlation analysis among the parameters related to microcrack length and the tensile strengths was performed. These parameters may include frequency(N), total length(Lt), mean length(Lm), median length(Lmed) and density(ρ). The correlation charts among individual parameters on the above microcrack(X) and corresponding five levels of tensile strengths for the five groups(Y) were made. From the five kinds of correlation charts, the values of correlation coefficients(R2) increase along with the five levels of strengths. The mean values of the five correlation coefficients from each chart increase in order of 0.22(N) < 0.34(Lt) < 0.38(ρ) < 0.57(Lmed) < 0.58(Lm). Fourth, the correlation chart among the corresponding maximum strength for group E(X) and the above five parameters(Y) were made. From the related chart, the values of correlation coefficient increase in order of 0.61(N) < 0.81(Lt) < 0.87(ρ) < 0.93(Lm) < 0.96(Lmed). The two parameters that have the highest correlations are median length with maximum strength. Through the above correlation analysis between microcrack and strength, the credibility for the results from this study can be enhanced.

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

The vertical location of the center of resistance for maxillary six anterior teeth during retraction using three dimensional finite element analysis (상악 6전치부의 후방견인시 저항중심의 수직적 위치에 관한 3차원 유한요소법적 연구)

  • Lee, Hye-Kyoung;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.425-438
    • /
    • 2001
  • The delivery of optimal orthodontic treatment is greatly influenced by clinician's ability to predict and control tooth movement by applying well-known force system to dentition. It is very important to determine the location of the centers of resistance of a tooth or teeth in order to have better understanding the nature of displacement characteristics under various force levels. In this study, three dimensional finite element analysis was used to measure the initial displacement of the consolidated teeth under loading. The purpose of this study was to define the location of the centers of resistance at the upper six anterior segment. To observe the changes of six anterior segment, 200gm, 250gm, 300gm, and 350gm forces at right and left hand side each were imposed toward lingual direction. For this study, two cases, six anterior teeth and six anterior teeth after corticotomy, were reviewed. In addition, it was reviewed the effects of changes on the location of the center of resistance in both cases based on different degree of forces aforementioned. The results were that : 1. The instantaneous center of resistance for the six anterior teeth was vertically located between level 4 and level 5, which is, at 6.76mm, $44.32\%$ apical to the cementoenamel junction level. 2. The instantaneous center of resistance for the six anterior teeth after corticotomy was located vertically between level 4 and level 5, that is, at 7.09mm $46.38\%$ apical to the cementoenamel junction level. 3. Changes of force showed little effect on the location of the center of resistance in each case. 4. It was observed that the location of the instantaneous center of resistance for the six anterior teeth after corticotomy was changed more than the six anterior teeth without corticotomy to the apical part, and the displacement of the consolidated anterior teeth moved further in case of the consolidated teeth after corticotomy.

  • PDF

A Comparative Study on the Retention of Implant Overdenture According to the Shape and the Number of Magnetic Attachment (자성 어태치먼트의 형태와 수에 따른 하악 임플란트 피개의치의 유지력에 대한 비교 연구)

  • Seo, Min-Ji;Lee, Joon-Seok;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • The aim of this study was to compare the retention and stability of implant overdenture according to the shape and the number of magnetic attachment. The experimental groups were designed for the number of implants(1, 2, 4) and shape of magnetic attachments(flat, cushion, dome type) resulting in 9 subgroups. 45 attachments were tested attached to $Br{\aa}nemark$ system implants which were planted on a mandibular model. Each attachment was composed of the magnet assembly embedded in a overdenture sample and the abutment keeper screwed into the implants. Dislodging tensile forces were applied to the overdenture samples using an Instron(cross-head speed 50.80mm/min) in 3 directions simulating function: vertical, oblique, and anterior-posterior. The loading was repeated 10 times in each direction for 45 samples. The values of maximum dislodging force of each subgroup were processed statistically using SPSS V. 12.0 at the 0.05 level of significance. The results of this study were as follows: 1. Flat type magnetic overdenture was the most retentive when subjected to vertically directed forces and dome type was the lest retentive when subjected to obliquely directed forces(p<0.05). 2. In case of planting one implant, flat type had a higher vertically retentive force than anterior-posteriorly retentive force. In case of planting two implants, flat type and dome type had a higher vertically retentive force and in case of planting four implants, flat type and cushion type had a higher vertically retentive force than anterior-posteriorly retentive force(p<0.05). 3. The incremental number of dental implant, without regards to the three types of magnetic attachment shapes, showed higher retention of overdenture(p<0.05). From the results, if a patient need much more retention of implant overdenture, flat type magnetic overdenture would be a good treatment. In case of the bruxism where excessive lateral forces are already present, dome type could be expected to produce better results. In case of planting one implant, flat type is more stable than the other shape of magnet and in case of two implant, flat type and dome type are more stable and in case of four implants, flat type and cushion type are more stable. Planting more than two implants and using flat type magnetic attachment would provide better retention and stability of implant overdenture

FEA estimates of margin design in all ceramic crowns (완전 도재관을 위한 지대치 형성시 변연 형태에 따른 응력 분포의 유한요소법적 비교)

  • Han, Sang-Hyun;Cho, Jung-Hyeon;Lee, En-Jung;Jeong, Suk-In;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Statement of problem: Over the past decade, increased demand for esthetically pleasing restorations has led to the development of all-ceramic systems. Recent reports suggest that the all-ceramic crowns have excellent physical properties, wear resistance, and color stability. In addition, numerous ceramics have excellent biocompatibility, a natural appearance, and improved physical bonding with resin composite luting agents. However, the brittle nature of ceramics has been a major factor in their restriction for universal usage. Functional occlusal loading can generate stress in the luting agent, and the stress distribution may be affected by the marginal geometry at the finish line. Tooth preparation for fixed prosthodontics requires a decision regarding the marginal configuration. The design dictates the shape and bulk of the all ceramic crowns and influences the fit at the margin. Purpose: The purpose of this study was to evaluate the stress distribution within marginal configurations of all- ceramic crowns (90-degree shoulder, 110-degree shoulder, 135-degree shoulder). Material and methods: The force is applied from a direction of 45 degrees to the vertical tooth axis. Three-dimensional finite element analysis was selected to determine stress levels and distributions. Results and conclusion: The result of stress level for the shoulder marginal configuration was more effective on stress distribution at 135-degree shoulder margin. But the stresses concentrated around at 135-degree shoulder margin. The stress decreased apically at the surface between cements and alumina core, and increased apically at the surface between alumina core and veneering porcelain.

A Study on Effective Management & Administration System for Deluxe Hotel Kitchen in Seoul Area. (관공호텔 조리직무의 분업과 통합에 따른 문제점과 개선방안에 관한 연구)

  • 라영선
    • Culinary science and hospitality research
    • /
    • v.1
    • /
    • pp.57-89
    • /
    • 1995
  • Despite prologed business stagnation of both international and domestic economy, hotel business as well as tourist industry has continuously been keeping growing, owing to increase of surplus income and world flowing population. During recent 4 years, growth rate of yearly mean in domestic hotels reached 9.9% and especially that of the superior class hotels 15.2%. In the composition of domestic tourist hotel's revenue, the earnings of guest rooms form 37.4%, on the other hand those of food & beverage 39.9%. This result is that our hotel business is concentrated on its interest in FOOD & BEVERAGE of which productivity per unit dimension can be increased to an unlimited extent and extent and superior class hotels strengthened in F&B are increasing in comparison with European or American hotels which are focused on guest rooms in their management. For value added rate of F&B is low as compared with increase of their earnings, they are interested in the management techniques which focus on rising the rate. As for the cost of Food & Beverage, personnel expenditure forms 36.5% and the direct materials 31.5%. Therefore how to manage personnel and materials costs which compose as much as 68% of total revenue will greatly affect net profit. We can say that an effective management technique in cost of Food & Beverage is one of the most important know-hows in hotel management. Especially management know-how for the Kitchen Department where the most of foods come out makes a great effects on various expenses, productivity and it is the achievement from hotel management. For the most of the hotel's top managers, they don't seriously take the fact that KITCHEN SYSTEM affects greatly total expenditure. This study starts from the point of recognizing the question of fundamental cause affecting tow largest cost elements incurred in Food & Beverage and trying to present an effective kitchen system. To settle the questions raised, I compared and analyzed productivity and cost of food & beverage and unit kitchen centered around superior class hotels in Seoul, which vary in Kitchen Systems. In order to attain the aforementioned study effectively purpose of this study, I compared Room-Service and Coffee-Shop Menu, flow of basic food in the kitchen, extent and result of division of labor and integration in the kitchen, scale of outlet kitchen, productivity, the turnover rate of food in store, food cost rate one another which all vary in Kitchen Systems. All these elements are compared and analyzed each other being divided into two main groups such as①. Main Production kitchen and Banquet Kitchen, and ②. coffee-shop kitchen and Room-service Kitchen. Therefore this study is to point out the problems in managing kitchens of superior class hotels which are different in systems. An effort was made to find out the better Kitchen System for superior deluxe hotels. I emphasize the followings on the proper scale of division of labor and integration of unit kitchen and a disposition plan for outlet kitchens of restaurant. First, KITCHEN SYSTEM as a sub-system of Hotel Management System is composed of sub-systems of outlet unit kitchen. Basic food materials are cooked and served for the guests while support kitchen and out restaurant kitchen interact organically each other. So Kitchen should be considered as a system composed of integrated sub-systems. Second, support and banquet kitchens should be integrated to be managed. And these unit kitchens have to be designed to be placed in the back of banquet rooms area. Third, coffee-shop kitchen and room-service kitchen should be integrated to be managed. Fourth, several unit business kitchens should be place on the same floor. Fifth, main production kitchens ought to be located near the loading duck, food store and large refrigerator. Sixth, considering the limits of supervision, duties should be adjusted as 12-20 cooks in two shifts a day for a sub-kitchen, and 18-30 cooks in three shifts a day so that labor division can be made. Last, I would like to two points for direction and task of future study. Firstly, I compare the effective income and increasing costs each other, which are incurred by increasing the use rate of the second processing materials for foods perched outside and through the results. I can find out the better points of the processing production and circulation system, and then I study this effects made on hotel kitchen system. Secondly, I can point out that more efficient kitchen system shall be established through comparing and analyzing the matter of amount of indirect costs and flow of food in different kitchen systems.

  • PDF