• Title/Summary/Keyword: loading direction

Search Result 748, Processing Time 0.024 seconds

Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load (이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동)

  • Heo, Yong-Hak;Park, Hwi-Rip;Gwon, Il-Beom;Kim, Jin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.

The Piezoelectric Degradation and Mechanical Properties in PZT Ceramics with $MnO_2$ Addition ($MnO_2$를 첨가한 PZT 세라믹스의 압전열화 및 기계적 특성)

  • 김종범;최성룡;윤여범;태원필;김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.257-264
    • /
    • 1997
  • The aim of this study was to investigate the degradation of piezoelectric properties with compressive cy-clic loading, the change in bending strength before and after poling treatment and fracture strength in MPB depending on the amount of MnO2 addition. The MPB with 0.25 wt.% MnO2 showed the best resistance against the piezoelectric degradation with compressive cyclic loading. Bending strength increased when pol-ing and loading directions are parallel, however decreased when poling and loading directions are per-pendicular each other. Because, during poling treatment, compressive residual stress is generated in the pol-ing direction but tensile residual stress in the perpendicular direction to poling direction.

  • PDF

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

Influence of Pad Shape on Self-Alignment in BGA Soldering (BGA 솔더링에서 패드 형상이 자기정렬에 미치는 영향)

  • 안도현;정용진;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.87-91
    • /
    • 2003
  • Effects of the circular and non-circular pad shapes on self-alignment in BGA soldering are predicted using Surface Evolver, and the calculated results are compared with experimental data. While the pad shape has minor effects on self-alignment in the vertical direction, self-alignment in the lateral direction depends on the pad direction and length ratio of the non-circular pad. Larger restoring force is obtained in the minor-axis direction than the major-axis direction, which suggests a possibility of reducing misalignment in the specific direction. The restoring force of the circular pad is between those of the non-circular pad in the major and minor-axis directions. The calculated results of Surface Evolver show reasonably good agreements with experimental data using the shear loading system.

An Experimental Study on the Bond Stress Distribution along the Reinforcing Bar Subjected to Repeated Loading $\mid$ (반복하중을 받는 철근의 부착 응력도에 관한 실험적 연구)

  • Chung, L.;Cho, D.C.;Park, H.S.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.66-71
    • /
    • 1990
  • The prediction and estimation of R/C structure behavior subjected to earthquake type loading is partly based on the experimental results of the monotonically increased cyclic loading, rather than that of the irregularly increased cyclic loading. However, actual earthquake is typical random vibration. In this respect, comparing and analysing experimental test results of R/C specimens subjected to monotonically increased cyclic loading and irregularly increased cyclic loading, this study proposes the research direction of irregularly increased cyclic loading during earthquake.

  • PDF

Study on the Prediction of the Occurrence and Distribution of the Microcracks in Rock (암석의 미세균열의 발달과 분포의 예측방법에 관한 연구)

  • 백환조;김덕현;최성범
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.226-233
    • /
    • 1998
  • Microcracks in rock materials, whether natural or induced, provide useful information on the engineering performance of in situ rockmasses. A population of preferentially oriented microcracks has observable effects on the physical properties of a rockmass, but their effects may not be evident if the rock material is highly anisotropic due to other causes. An experimental program was undertaken to investigate the effect of rock fabrics on the physical properties of rock materials. In this study, anisotropy in the circumferential wave velocity and the direction of induced fractures under axial point loading were measured. Rock specimens (NX-size) of the leucocractic Pocheon granite were cored from rock blocks, retaining the relative directions of each specimen. Another set of specimens was prepared from the rock cores of the same meterial, obtained in the field. The master orientation line (MOL) was set to be the representative direction of the microcracks in the specimen. Variation of the circumferential wave velocity of each specimen was then measured along the core, keeping the MOL as reference. The direction of the minimum wave velocity was nearly perpendicular to the direction of the MOL. Coring of smaller-sized (EX-size), concentric specimens from the NX specimens were then followed, and axial point loading was applied. The direction of induced fractures due to axial point loading was closely related to the MOL direction, confirming the prior test result.

  • PDF

The Study on the Determination of the Contact Area of the Circular Plate Resting on Elastic Half-space under Axisymmetric Loading (탄성지반 위의 축대칭 하중을 받는 원판의 접촉응력 해석에 관한 연구)

  • 조현영;정진환;김성철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.87-94
    • /
    • 1997
  • The circular plate resting on Boussinesq's half-space model under axisymmetric loading is studied by a finite element procedure to evaluate the distribution of contact pressure between plate and elastic half-space. The displacement of half-space due to axisymmetric surface loading can be evaluated by double integration of Boussinesq's solution. On that case the analytical integration can be executed for the radial direction but the analytical integration for the circumferential direction is impossible and the numerical integration should be considered. With the radial integration we can get non-dimensional function. Then the numerical integration for the formula is executed for the circumferential direction and the results are approximated 5th order Polynomials by using the least square method. With these 5th order approximate formula, the flexibility matrix of half-space is constructed as the coefficient matrix of nodal contact pressure by the finite element procedures. Iteration procedures are attempted by using this method to determine the separated region.

  • PDF

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.