• Title/Summary/Keyword: loading condition

Search Result 1,891, Processing Time 0.032 seconds

Experimental Data Analysis using Computational Numerical Analysis on the Response of One-way Reinforced Concrete Slab under Blast Loading (전산수치해석을 이용한 일방향 철근콘크리트 부재의 폭발 실험결과 분석)

  • Ji, Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.424-434
    • /
    • 2016
  • A few blast experiments are conducted to investigate the behavior of one-way reinforced concrete(RC) slabs under blast loading. Reflected blast characteristics as well as displacements and damage patterns of RC slabs are measured. Numerical models are also established in the software ANSYS AUTODYN to reproduce the experiments on RC slabs. The numerical models are distinguished from each other by different boundary conditions at the edges of RC slabs, which are assumed to reproduce displacements and damage patterns resulted from the experiments. The boundary condition of the experimental tests is estimated from the numerical simulation results. From the numerical simulation results, the boundary condition should be improved in order to measure the accurate maximum displacement in the experimental tests.

The Subsurface Stress Field Caused by Both Normal Loading and Tangential Loading

  • Koo Young- Phi;Kim Tae-Wan;Cho Yong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1967-1974
    • /
    • 2005
  • The subsurface stress field caused by both normal loads and tangential loads has been evaluated using the rectangular patch solution. The effect of tangential loading on the subsurface stress field has been investigated in detail for both the cylinder-on-cylinder contact and a spur gear teeth contact. For the cylinder-on-cylinder contact, the subsurface stress fields are moved more to the direction of tangential loads and the positions where the maximum stress occur are getting closer to the surface with the increasing tangential loads. The subsurface stress fields of the gear teeth contact are expanded more widely to the direction of tangential loads with the increasing tangential loads. The friction coefficient of a gear teeth contact is low because they are operated in a lubricated condition, and therefore surface tractions in the EHL condition hardly affect on the subsurface stress field.

Finite Element Analysis on Concrete Fracture using Homogenized Crack Model (혼합균열모델을 적응한 콘크리트 파괴의 유한요소해석)

  • 송하원;방춘석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.137-144
    • /
    • 2003
  • Since quasi-brittle material like concrete shows strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this study, a homogenized crack model which overcomes the drawback and considers rate discontinuity in the constitutive equation is proposed for modeling of cracking in concrete and its propagation in strain softening regime. Then, a series of finite element analysis of the concrete under various loading conditions has been performed. From comparison of analysis results with experimental data, it is shown that failure behavior due to localized cracking of concrete under both compressive loading condition and tensile loading condition is well predicted by the homogenized crack model.

  • PDF

Truss Ooptimization Using Homology Constraints under Multiple Loadings (호몰로지 제한조건을 이용한 다중하중하의 트러스 최적설계)

  • ;;;Kim, Kyung-Keun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2800-2811
    • /
    • 1996
  • The deformation of a structure shall be called homologous, if a given geometrical relation holds, for a given number of structural points, before, during, and after the deformation. Some researchers have utilized the idea on structural design with finite element method. The approaches use the decomposition of the FEM equation or equality of eqality equations to obtain homologous deformation. However, weight reduction and response constraints such as stress, displacement or natural frequency cannot be considered by those theories. An optimization method solving the above problems is suggested to gain homologous deformation. Homology constraints can be considered under multiple loadindg conditions as well as a single loading condition. Homology index is defined for the multiple loading conditions Examples are solved to present the performances of the method.

  • PDF

Strain Behavior of Ultra-high-strength Concrete under High Temperature and Loading (고온 및 재하에 따른 초고강도콘크리트의 변형거동)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Hwang, Eui-Chul;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.86-87
    • /
    • 2017
  • The high-temperature creep of Ultra-High-Strength Concrete (UHSC) has been investigated in this study. The purpose of this study is to evaluated total strain and high-temperature creep at elevated temperatures under loading condition of UHSC. As results, Total strain of UHSC increased showing shrinkage with increasing compressive strength. The high-temperature creep of UHSC increased with the temperature and higher level of compressive strength showed bigger high-temperature creep.

  • PDF

Transient Creep Strain of Ultra High Strength Concrete with Heating and Loading (가열 및 하중조건에 따른 초고강도콘크리트의 과도변형)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Ui-Chul;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.59-60
    • /
    • 2015
  • In this study, stress-strain, thermal expansion strain, total strain and high temperature creep strain of ultra-high-strength concrete with compressive strengths of 80, 130, and 180MPa were experimentally evaluated considering elevated temperature and loading condition. Also, transient creep strain has been calculated by using the results of experiment. Experimental coefficient K was proposed with application of non-steady state creep model. It is considered that the experimental results of this study could be baseline data for deformation behavior analysis of ultra-high-strength concrete.

  • PDF

A Study on the Characteristics of Bearing Capacity for SIP Piles constructed on Rock Mass (암반에 근입된 SIP 말뚝의 지지력 특성에 관한 연구)

  • Kim, Tae-Hwoon;Park, Jun-Hong;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.295-300
    • /
    • 2002
  • In this research problems of recent design methods and their improvement for SIP in domestic areas were studied by using the characteristics of load-settlement curves and bearing capacity from field loading tests. Elastic and plastic settlement for total settlement in each loading step conducted domestic areas had a tendency. From these tendency and bearing capacity determined by loading tests we can ascertain that empirical chart can be assistant tool in SIP design. It showes that SIP design using N-value in domestic area with soil condition of grarute type results in very conservative bearing capacity, to be opposed in soil with unprofitable geological condition the design can be insecure. Also, we can ascertain that Meyerhof's bearing capacity used modified N-value on tip part of pile is more applicable than recent design method where tip bearing capacity is 20NAp N-value limited to 50. These results show that modified design method can he more economic than before because of using pile's bearing capacity to tolerable load of pile material.

  • PDF

Durability Study of Subway Brake Disc and Wheel-type Brake (지하철의 브레이크 디스크와 차륜방식브레이크의 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, as part of the subway braking system, the structural analysis was performed with the fatigue analysis by comparing subway brake disc and wheel-type brake. When structural analysis was performed, it was possible to verify that the wheel-type brake were higher than the brake discs in case of total deformation. As the same loading conditions were given to the subway brake disc and wheel-type brake, wheel-type brakes was shown to have more deformation than brake disk but lower damage than the subway brake disc. Comparing with each fatigue loading condition, the maximum fatigue life for 'Sample history' is found to be about 60 times longer than for 'SAE bracket history'.

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENT BY MECHANICAL LOADING(I) -FINITE ELEMENT ANALYSIS-

  • Jang, Kyoung-Bok;Kim, Jung-Hyun;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.378-383
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non-coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF