• 제목/요약/키워드: loading capability

검색결과 242건 처리시간 0.022초

Investigation of major parameters affecting instablility of steel beams with RBS moment connections

  • Tabar, A.Moslehi;Deylami, A.
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.203-219
    • /
    • 2006
  • One of the most promising ways through which a steel moment frame may attain high energy dissipating capability is to trim off a portion of the beam flanges near the column face. This type of moment connection, known as Reduced Beam Section (RBS) connection, has notable superiority in comparison with other moment connection types. As the result of the advantages of RBS moment connection, it has widely being used in practice. In spite of the good hysteretic behaviour, an RBS beam suffers from an undesirable drawback, which is local and lateral instability of the beam. The instability in the RBS beam reduces beam load-carrying capacity. This paper aims to investigate key issues influencing cyclic behaviour of RBS beams. To this end, a numerical analysis was conducted on a series of steel subassemblies with various geometric properties. The obtained results together with the existing experimental data are used to study the instability of RBS beams. A new slenderness concept is presented to control an RBS beam for combined local and lateral instability. This concept is in good agreement with the numerical and experimental results. Finally, a model is developed for the prediction of the magnitude of moment degradation owing to the instability of an RBS beam.

Mimicking the pattern formation of fruits and leaves using gel materials

  • Chen, Li;Zhang, Yang;Swaddiwudhipong, Somsak;Liu, Zishun
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.575-588
    • /
    • 2014
  • Gel materials have recently gained more attention due to its unique capability of large and reversible volumetric changes. This study explores the possibility of mimicking the pattern formation of certain natural fruits during their growing process and leaves during drying processes through the swelling and de-swelling of gel materials. This will hopefully provide certain technical explanations on the morphology of fruits and plants. We adopt the inhomogeneous field gel theory to predict the deformation configurations of gel structures to describe the morphology of natural fruits and plants. The growing processes of apple and capsicum are simulated by imposing appropriate boundary conditions and field loading via varying the chemical potential from their immature to mature stages. The drying processes of three types of leaves with different vein structures are also investigated. The simulations lead to promising results and demonstrate that pattern formation of fruits and plants may be described from mechanical perspective by the behavior of gel materials based on the inhomogeneous field theory.

LS-DYNA 코드의 유체-구조 연성해석 기법을 이용한 자유낙하식 구명정의 가속도 응답 추정 (Estimation of Acceleration Response of Freefall Lifeboat using FSI Analysis Technique of LS-DYNA Code)

  • 배동명;자키;김학수;김주곤
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.681-688
    • /
    • 2010
  • During certification of freefall lifeboats, it is necessary to estimate the injury potential of the impact loads exerted on the occupants during water entry. This paper focused on the numerical simulation to predict the acceleration response during the impact of freefall lifeboats on the water using FSI(Fluid-Structure Interaction) analysis technique of LS-DYNA code. FSI problems could be conveniently simulated by the overlapping capability using Arbitrary Lagrangian Eulerian(ALE) formulation and Euler-Lagrange coupling algorithm of LS-DYNA code. Through this study, it could be found that simulation results were in relatively good agreement with experimental ones in the acceleration peak values, and that the loading conditions were very sensitive to the acceleration responses by the experimental and simulation results.

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Seismic Behavior Investigation of the Corrugated Steel Shear Walls Considering Variations of Corrugation Geometrical Characteristics

  • Farzampour, Alireza;Mansouri, Iman;Hu, Jong Wan
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1297-1305
    • /
    • 2018
  • The corrugated steel plate shear walls have recently been proposed to address the seismic issues associated with simple steel plate shear walls; however, stiffness, strength, and ductility of the corrugated shear walls are significantly affected by varying the corrugation geometry under seismic loading. The present study investigates steel shear walls' models with corrugated or simple infill plates subjected to monotonic and cyclic loads. The performance of the corrugated steel plate is evaluated and then compared to that of the simple steel plates by evaluating the damping ratios and energy dissipation capability. The effect of corrugation profile angle, the existence of an opening, and the corrugation subpanel length are numerically investigated after validation of the finite element modeling methodology. The results demonstrate that incorporating corrugated plates would lead to better seismic damping ratios, specifically in the case of opening existence inside of the infill plate. Specifically, the corrugation angle of $30^{\circ}$ decreases the ultimate strength, while increasing the initial stiffness and ductility. In addition, the subpanel length of 100 mm is found to be able to improve the overall performance of shear wall by providing each subpanel appropriate support for the adjacent subpanel, leading to a sufficient buckling resistance performance.

Thermographic analysis of failure for different rock types under uniaxial loading

  • Kirmaci, Alper;Erkayaoglu, Mustafa
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.503-512
    • /
    • 2020
  • Mining activities focus on the production of mineral resources for energy generation and raw material requirements worldwide and it is a known fact that shallow reserves become scarce. For this reason, exploration of new resources proceeds consistently to meet the increasing energy and raw material demand of industrial activities. Rock mechanics has a vital role in underground mining and surface mining. Devices and instruments used in laboratory testing to determine rock mechanics related parameters might have limited sensing capability of the failure behavior. However, methodologies such as, thermal cameras, digital speckle correlation method and acoustic emission might enable to investigate the initial crack formation in detail. Regarding this, in this study, thermographic analysis was performed to analyze the failure behaviors of different types of rock specimens during uniaxial compressive strength experiments. The energy dissipation profiles of different types of rocks were characterized by the temperature difference recorded with an infrared thermal camera during experiments. The temperature increase at the failure moment was detected as 4.45℃ and 9.58℃ for andesite and gneiss-schist specimens, respectively. Higher temperature increase was observed with respect to higher UCS value. Besides, a temperature decreases of about 0.5-0.6℃ was recorded during the experiments of the marble specimens. The temperature change on the specimen is related to release of radiation energy. As a result of the porosity tests, it was observed that increase in the porosity rate from 5.65% to 20.97% can be associated to higher radiation energy released, from 12.68 kJ to 297.18 kJ.

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

Partitioning effects and corrosion characteristics of oxyapatite glass-ceramic wasteforms sequestering rare-earth elements

  • Kim, Miae;Kang, Jaehyuk;Yoon, Jang-Hee;Lee, Sang-Geul;Um, Wooyong;Kim, Hyun Gyu
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.997-1002
    • /
    • 2022
  • Oxyapatite[Ca2Nd8(SiO4)6O2] glass-ceramics have been suggested as wasteforms for the immobilisation of rare-earth radioactive nuclides because of their high waste-loading capability and good chemical durability. In particular, a partitioning effect is predicted to contribute to an enhancement of corrosion resistance in glass-ceramics compared with that of conjugate glasses of the same composition. Because rare-earths are inherently insoluble nuclides, detection of changes in corrosion behavior between glass-ceramics and conjugate glasses under normal conditions is not easy. In this study, therefore, we revealed the partitioning effect by exposing glass-ceramics and glasses to solution of pH 2, 7 and 10 at 90 ℃ for 20 d. In addition, we proposed the corrosion mechanism for oxyapatite glass-ceramics under various corrosion conditions. Especially, the glassy phase dissolved first, followed by the oxyapatite phase during pH 7 corrosion.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.