• Title/Summary/Keyword: loading capability

Search Result 242, Processing Time 0.025 seconds

Offshore wind turbine installation vessel dynamic positioning capability analysis with considering installation structures

  • Daeseong, Lim;S.W., Kim;Jeong-Hyun, Yoon;Seo-ho, Lee
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.461-477
    • /
    • 2022
  • Dynamic Positioning (DP) is a system that uses computer-controlled thrusters, propellers, and other propulsion devices to automatically maintain a vessel's position and heading. In this study, a wind turbine installation vessel with DP capabilities was proposed for use in mild environmental conditions in the Yellow Sea. The thruster arrangements of the vessel were analyzed in relation to wind and current loads, and it was found that a four-corner arrangement of thrusters provided the best position-keeping performance. The vessel's DP control performance was also analyzed in relation to the increased environmental load caused by the presence of a wind turbine, using a capability plot. The vessel's performance was evaluated in three different states: floating with no load, during the loading of a wind turbine and suction buckets, and after the wind turbine has been installed. The use of 750 kW and 1,000 kW thrusters was also considered, and the environmental loads in the Saemangeum coastal area and the environmental load when a 5-Megawatt wind turbine is on board were assessed. The study concluded that at least four thrusters should be used for DP to safely manage the installation process of wind turbines.

Fuse Protection of IGBT Modules against Explosions

  • Blaabjerg Frede;Iov Florin;Ries Karsten
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.703-707
    • /
    • 2001
  • The demand for protection of power electronic applications has during the last couple of years increased regarding the high-power IGBT modules. Even with an active protection, a high power IGBT still has a risk of exhibiting a violent rupture in the case of a fault if IGBT Fuses do not protect it. By introducing fuses into the circuit this will increase the circuit inductance and slight increase the over-voltage during the turn-off of the diode and the IGBT. It is therefore vital when using fuses that the added inductance is kept at a minimum. This paper discuss three issues regarding the IGBT Fuse protection. First, the problem of adding inductance of existing High-Speed and new Typower fuses in DC-link circuit is treated, second a short discussion of the protection of the IGBT module is done, and finally, the impact of the high frequency loading on the current carrying capability of the fuses is presented.

  • PDF

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Cell Loading Algorithm foror the Purpose of Realtime Navigation in Virtual Space (가상공간에서 실시간 네비게이션을 위한 셀 로딩 알고리즘)

  • 이기동;손정봉;최창은
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.454-460
    • /
    • 2003
  • while they cannot overcome the limitation that arises in the process of representing the 3D real world to the 2D plane. Also, there exists requirements on performance to support realtime navigation capability.In this paper, therefore, we propose a cell loading algorithm for navigating virtual space that can support realtime visualization according to the multimedia objects in variety and the change of the view point by user, and that can accommodate the capacity imposed in the process of navigation regardless of the number of objects.

  • PDF

Evaluation of YasufukuYs Constitutive Model for Compacted Weathered Granite Soil (다짐풍화화강토에 대한 Yasufuku 구성모델의 평가)

  • ;;Li Guang Fan
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.43-55
    • /
    • 1999
  • This study evaluated Yasufuku's constitutive model in terms of its capability to accurately consider the observed behavior of Iksan compacted weathered granite soil for various stress-paths. The strains calculated from the model are in reasonable agreement with those measured, but some discrepancies occur. The largest differences between measured and calculated strains occur for axial strain of proportional loading with increasing stress. Yasufuku's constitutive model can consider the observed behavior of Iksan compacted weathered granite soil with accuracy for conventional triaxial compression and for p'-constant loading with increasing stress ratio.

  • PDF

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

Stress dependent relaxation time in large deformation

  • Waluyo, Sugeng
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.317-323
    • /
    • 2017
  • This work presents a new strategy to model stress dependent relaxation process in large deformation. The strategy is relied on the fact that in some particular soft materials undergoing large deformation, e.g., elastomers, rubbers and soft tissues, the relaxation time depends strongly on stress levels. To simplify the viscoelastic model, we consider that the relaxation time is the function of previous elastic deviatoric stress state experienced by materials during loading. Using the General Maxwell Model (GMM), we simulate numerically conditions with the constant and the stress dependent relaxation time for uniaxial tension and compression loading. Hence, it can be shown that the proposed model herein not only can represent different relaxation time for different stress level but also maintain the capability of the GMM to model hysteresis phenomena.

Repeated Loading Tests of Reinforced Concrete Beams Containing Headed Shear Reinforcement (Headed Shear Bar를 사용한 콘크리트 보의 반복 하중 실험)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.512-517
    • /
    • 2003
  • The repeated loading responses of four shear-critical reinforced concrete beams, with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}C$ standard hooks, having free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups, with improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened, resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

  • PDF

Integrated equations of motion for direct integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.569-589
    • /
    • 2002
  • In performing the dynamic analysis, the step size used in a step-by-step integration method might be much smaller than that required by the accuracy consideration in order to capture the rapid chances of dynamic loading or to eliminate the linearization errors. It was first found by Chen and Robinson that these difficulties might be overcome by integrating the equations of motion with respect to time once. A further study of this technique is conducted herein. This include the theoretical evaluation and comparison of the capability to capture the rapid changes of dynamic loading if using the constant average acceleration method and its integral form and the exploration of the superiority of the time integration to reduce the linearization error. In addition, its advantage in the solution of the impact problems or the wave propagation problems is also numerically demonstrated. It seems that this time integration technique can be applicable to all the currently available direct integration methods.

Fuse Protection of IGBT Modules against Explosions

  • Blaabjerg, Fred;Ion, Florin;Ries, Kareten
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.88-94
    • /
    • 2002
  • The demand for protection of power electronic application has during the last couple of vears increased regarding the high-power IGBT modules. Even with an active protection, a high power IGBT still has a risk of exhibiting a violent rupture in the case of a fault if IGBT Fuses do not protect it. By introducing fuses into the circuit this will increase the circuit inductance and slight inductance over-voltage during the turn-off of the diode and the IGBT. It is therefore vital when using fuses that the added inductance is kept at a minimum. This paper discuss three issues regarding the IGBT Fuse protection of adding inductance of existing High-speed and new Typower Fuse protection. First, the problem of adding inductance of exiting High-speed and new Typower Fuse DC-link circuit is treated, second a short discussion of protection of the IGBT module is done, and finally, the impect of the high frwquency loading on the currying capability of the fuses is presented.