Browse > Article
http://dx.doi.org/10.12989/sem.2017.61.3.317

Stress dependent relaxation time in large deformation  

Waluyo, Sugeng (Department of Industrial Engineering, University of Jenderal Soedirman)
Publication Information
Structural Engineering and Mechanics / v.61, no.3, 2017 , pp. 317-323 More about this Journal
Abstract
This work presents a new strategy to model stress dependent relaxation process in large deformation. The strategy is relied on the fact that in some particular soft materials undergoing large deformation, e.g., elastomers, rubbers and soft tissues, the relaxation time depends strongly on stress levels. To simplify the viscoelastic model, we consider that the relaxation time is the function of previous elastic deviatoric stress state experienced by materials during loading. Using the General Maxwell Model (GMM), we simulate numerically conditions with the constant and the stress dependent relaxation time for uniaxial tension and compression loading. Hence, it can be shown that the proposed model herein not only can represent different relaxation time for different stress level but also maintain the capability of the GMM to model hysteresis phenomena.
Keywords
relaxation time; large deformation; incompressible; Maxwell element; stress dependent;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kornbluh, R.D., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S. and Low, T. (2012), "From boots to buoys: promises and challenges of dielectric elastomer energy harvesting", In Electroactivity in Polymeric Materials, Springer, US.
2 Kramarenko, E.Y., Chertovich, A.V., Stepanov, G.V., Semisalova, A.S., Makarova, L.A., Perov, N.S. and Khokhlov, A.R. (2015), "Magnetic and viscoelastic response of elastomers with hard magnetic filler", Smart Mater. Struct., 24(3), 035002.   DOI
3 Liu, Y., Han, H., Liu, T., Yi, J., Li, Q. and Inoue, Y. (2016), "A novel tactile sensor with electromagnetic induction and its application on stick-slip interaction detection", Sensor., 16(4), 430.   DOI
4 Miehe, C., Vallicotti, D. and Zah, D. (2015), "Computational structural and material stability analysis in finite electro-elastostatics of electro-active materials", Int. J. Numer. Meth. Eng., 102(10), 1605-1637.   DOI
5 Nguyen, C.T., Phung, H., Nguyen, T.D., Lee, C., Kim, U., Lee, D., Moon, H., Koo, J., Nam, J. and Choi, H.R. (2014), "A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators", Smart Mater. Struct., 23(6), 065005.   DOI
6 Reese, S. and Govindjee, S. (1998), "A theory of finite viscoelasticity and numerical aspects", Int. J. Solid. Struct., 35(26), 3455-3482.   DOI
7 Sahu, R.K. and Patra, K. (2016), "Rate-dependent mechanical behavior of VHB 4910 elastomer", Mech. Adv. Mater. Struct., 23(2), 170-179.   DOI
8 Simo, J.C. (1987), "On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects", Comput. Meth. Appl. Mech. Eng., 60(2), 153-173.   DOI
9 Sun, W., Jung, J. and Seok, J. (2015) "Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer", J. Intel. Mater. Syst. Struct., 1045389X15590274.
10 Taylor, R.L., Pister, K.S. and Goudreau, G.L. (1970), "Thermomechanical analysis of viscoelastic solids", Int. J. Numer. Meth. Eng., 2, 45-59.   DOI
11 Truesdell, C. and Toupin, R. (1960), The Classical Field Theories, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Springer, Berlin Heidelberg.
12 Tscharnuter, D. and Muliana, A. (2013), "Nonlinear response of viscoelastic polyoxymethylene (POM) at elevated temperatures", Polymer, 54(3), 1208-1217.   DOI
13 Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2015), "Stochastic microvibration response characteristics of a sandwich plate with MR visco-elastomer core and mass", Smart Struct. Syst., 16(1), 141-162.   DOI
14 Brochu, P. and Pei, Q. (2010), "Advances in dielectric elastomers for actuators and artificial muscles", Macromol. Rapid Commun., 31(1), 10-36.   DOI
15 Bahraini, S.M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 52(5), 937.   DOI
16 Bergstörm, J.S. and Boyce, M.C. (2001), "Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues", J. Mech. Mater., 33(9), 523-530.   DOI
17 Bortot, E., Denzer, R., Menzel, A. and Gei, M. (2016), "Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit", Int. J. Solid. Struct., 78, 205-215.
18 Dorfmann, A. and Ogden, R.W. (2006), "Nonlinear electroelastic deformations", J. Elasticity, 82(2), 99-127.   DOI
19 Herrmann, L.R. and Peterson, F.E. (1968), "A numerical procedure for viscoelastic stress analysys", Proceedings of the Seventh Meeting of ICRPG Mechanical Behaviour Working Group, Orlando.
20 Holzapfel, G.A. (1996), "On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures", Int. J. Numer. Meth. Eng., 39, 3903-3926.   DOI
21 Itskov, M. and Khiem, V.N. (2014), "A polyconvex anisotropic free energy function for electro-and magneto-rheological elastomers", Math. Mech. Solid., 1081286514555140.