• Title/Summary/Keyword: load shift control

Search Result 90, Processing Time 0.025 seconds

Hybrid Control Strategy of Phase-Shifted Full-Bridge LLC Converter Based on Digital Direct Phase-Shift Control

  • Guo, Bing;Zhang, Yiming;Zhang, Jialin;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.802-816
    • /
    • 2018
  • A digital direct phase-shift control (DDPSC) method based on the phase-shifted full-bridge LLC (PSFB-LLC) converter is presented. This work combines DDPSC with the conventional linear control to obtain a hybrid control strategy that has the advantages of linear control and DDPSC control. The strategy is easy to realize and has good dynamic responses. The PSFB-LLC circuit structure is simple and works in the fixed frequency mode, which is beneficial to magnetic component design; it can realize the ZVS of the switch and the ZCS of the rectifier diode in a wide load range. In this work, the PSFB-LLC converter resonator is analyzed in detail, and the concrete realization scheme of the hybrid control strategy is provided by analyzing the state-plane trajectory and the time-domain model. Finally, a 3 kW prototype is developed, and the feasibility and effectiveness of the DDPSC controller and the hybrid strategy are verified by experimental results.

State Feedback Control of Two-Mass Resonant System using $H_{\infty}$ Filter ($H_{\infty}$ 필터를 이용한 2관성 공진계의 상태궤환제어)

  • 김진수;김현중;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.332-335
    • /
    • 1997
  • In the industrial motor drive system, a shift torsional vibration si often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, the state feedback controller of the two-mass resonant system using the H$\infty$ filter is proposed. The H$\infty$ filter is robust in noise and disturbance. Simulation results show the validity proposed controller.

  • PDF

Stability evaluation of a proportional valve controller for forward-reverse power shuttle control of agricultural tractors

  • Jeon, Hyeon-Ho;Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Hyeon;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.597-606
    • /
    • 2021
  • Due to the characteristics of the farmland in Korea, forward and reverse shift is the most used. The fatigue of farmers is caused by forward and reverse shifting with a manual transmission. Therefore, it is necessary to improve the convenience of forward and backward shifting. This study was a basic study on the development of a current control system for forward and reverse shifting of agricultural tractors using proportional control valves and a controller. A test bench was fabricated to evaluate the current control accuracy of the control system, and the stability of the controller was evaluated through CPU (central processing unit) load measurements. A controller was selected to evaluate the stability of the proportional valve controller. The stability evaluation was performed by comparing and analyzing the command current of the controller and the actual current measured. The command current was measured using a CAN (controller area network) communication device and DAQ (data acquisition). The actual current was measured with a current probe and an oscilloscope. The control system and stability evaluation was performed by measuring the CPU load on the controller during control operations. The average load factor was 12.27%, and when 5 tasks were applied, it was shown to be 70.65%. This figure was lower than the CPU limit of 74.34%, when 5 tasks were applied and was judged to be a stable system.

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

Development of the Assembly Line Tester of Power Transmission for Lift Truck (지게차용 동력전달장치의 조립라인 전용시험기 개발)

  • Jang, Kyoung-Yeol;Yoo, Woo-Sik
    • IE interfaces
    • /
    • v.23 no.1
    • /
    • pp.58-67
    • /
    • 2010
  • The purpose of this paper is to present the development processes of the assembly line tester of power transmission for lift truck. Because power transmission is most important part of lift truck, all assembled powertrain parts must be inspected for operational defects, pressures and RPM. Developed assembly line tester is designed to take about 25 minutes for inspecting each assembled power transmission and located it at the end of assembled line. The assembly line no-load tester consists of three parts: (1) the driving hardware part; for installing and operating the transmission. (2) control PCB part; send data from sensors to a computer and control driving part, (3) operation software of no-load tester; for an automatic inspection or manual inspection, for database management and printing transcripts.

A Study on the Fault Tolerance and High Efficiency Control of 4 Leg DC/DC Converter for Battery Energy Storage System in Standalone DC Micro-grid (독립형 DC마이크로그리드 내 BESS용 4 LEG DC/DC 컨버터의 고장허용 및 고효율 제어에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Cha, Dae-Seak;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1239-1248
    • /
    • 2018
  • This paper proposes a fault tolerant and high efficiency operation algorithm for a 4 LEG DC/DC converter for a battery energy storage system(BESS) forming a main power source in a standalone DC micro grid. The BESS for the main power supply in the stand-alone DC micro-grid is required to operate at high speed according to fault tolerant control and load by operating at all times. Fault-tolerance control changes the short-circuit fault to an open-circuit fault by using a fuse in case of leg fault in 4 legs, and operates stably through phase shift control. In addition, considering the loss of the power semiconductor, the number of LEG operation is adjusted to operate at high efficiency in the full load region. In this paper, fault tolerant control and high efficiency operation algorithm of DC/DC converter for BESS in standalone DC micro grid is presented and it is proved through simulation and experiment.

Bidirectional Magnetic Wireless Communication System under Inductive Power Transfer capable of Amplitude-Shift Keying(ASK) Modulation Control (자기유도 무선전력전송시 진폭편이변조 제어가 가능한 양방향 자기장 무선통신 시스템)

  • Choi, Byeung-Guk;Lee, Eun-Soo;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • A novel bidirectional magnetic wireless communication system is proposed in this study. This system provides the communication capability between the source and load sides by high-frequency signal while wireless power is transferred. Contrary to the conventional wireless communication systems using complex IC circuit and active components, the proposed system is simply composed of passive components. It is practical and beneficial for environmental robustness, cost effectiveness, and simple implementation. The detailed static analysis of the proposed system for power and communication lines is established. The proposed system is experimentally verified, and results show that a 0.1 voltage gain for communication line is obtained while a 2.0 voltage gain for the power line is achieved. The proposed system is adequate for practical applications as it allows the inductive power transfer system to wirelessly and easily communicate between the source and load sides.

A Study of Demand Response Resource in Ancillary Service (계통보조서비스에서 부하자원의 활용방안에 대한 고찰)

  • Kim S.C.;Yoo S.Y.;Kim H.J.;Kim H.J.;Park J.B.;Sin J.R.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.663-665
    • /
    • 2004
  • There are some demand response program which is Direct Load Control and so on in Korea. These are used to manage lack of power stability or shift peak time for shading load. It is very important not only using stability power system but controling and scheduling power system on the whole. Interruptible loads are essential resources to solve lack of energy and limit of constructing generator On recently days, Demand Response Program's reliability is recognized as ancillary or reserve service in many country. This paper presents a necessity to apply demand resource to our ancillary program. For this reason, it is introduce overseas ancillary program using load resource.

  • PDF

Low price Fuel Cell Inverter System for 3[KW] Residential Power

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.61-72
    • /
    • 2007
  • This study proposed a high efficiency DC-DC converter with a new current doubler rectifier for fuel-cell systems for use with the Nexa(310-0027) PEMFC from the Ballard Co. The proposed high efficiency DC-DC converter for the fuel-cell system generated ZVS by applying partial resonance and using a phase shift PWM control method. Constantly switching frequency, loss of switching, peak current, and peak voltage were reduced by this system. In addition to this system, two inductors were attached to a rectifier circuit allowing it to be able to provide the direct current(DC) and DC voltage safely to a load with reduced ripple components. Also, by using the newly proposed current doubler rectifier, the high frequency DC-DC converter for the fuel cell system was capable of reaching a highest efficiency of 92[%] as compared to 88.3[%] efficiency in previous results, which means that efficiency increased 3.7[%]. The overall results were confirmed by a simulation and laboratory experiment.

A Study on the 300KHz ZVS Full Bridge PWM Converter (300KHz ZVS Full Bridge PWM 컨버터에 관한 연구)

  • 주형준;김의찬;최재동;손승찬;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.111-115
    • /
    • 1997
  • This Paper is concerned on developing DC-DC converter using ZVS-FB-PWM Converter. The converter output is 28V and regulated by phase shift control methode. MOSFET is used by the main switching device and high frequency transfomer is made for operating at 300㎑ switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF