• Title/Summary/Keyword: load incremental method

Search Result 158, Processing Time 0.022 seconds

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Numerical Method for Nonlinear Analysis of Composite Shells under Constant Lateral Pressure and Incremented In-plane Compression (일정 횡압력과 증분 압축하중을 동시에 받는 복합재 쉘의 비선형 해석을 위한 수치기법 연구)

  • 김진호;권진희
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • This paper presents a modified arc-length method for the nonlinear finite element analysis of a structure which is loaded in incremental and fixed forces, simultaneously. The main idea of the method is to separate the displacement term by the constant force from that by the incremental force. Presented method is applied to the nonlinear analysis of isotropic shell structures separately loaded by lateral pressure or compression, and shows the excellent agreement with previous results. As an illustrative example of the applicability of the present algorithm, a parametric study is performed on the nonlinear buckling analysis of composite cylindrical panels under the combined load of the incremented compression and the constant lateral pressure.

  • PDF

Collapse Behavior of Vehicle Structures (처체구조물의 붕괴거동)

  • 김천욱;한병기;원종진;이종선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.54-62
    • /
    • 1998
  • In this study, collapse behavior of frame composed of thin-walled rectangular tube is investigated. Considering the collapse of frame, the bending and compression members undergo large deformation. The stiffness of the compound element is obtained from analytical moment-rotation relationship and approximated load-deflection relationsh- ip of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state of each element for bending and compression.

  • PDF

A methodology for development of seismic fragility curves for URBM buildings

  • Balasubramanian, S.R.;Balaji, Rao K.;Meher, Prasad A.;Rupen, Goswami;Anoop, M.B.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.611-625
    • /
    • 2014
  • This paper presents a simple methodology that integrates an improved storey shear modelling, Incremental Dynamic Analysis and Monte Carlo Simulation in order to carryout vulnerability analysis towards development of fragility curves for Unreinforced Brick Masonry buildings. The methodology is demonstrated by developing fragility curves of a single storey Unreinforced Brick Masonry building for which results of experiment under lateral load is available in the literature. In the study presented, both uncertainties in mechanical properties of masonry and uncertainties in the characteristics of earthquake ground motion are included. The research significance of the methodology proposed is that, it accommodates a new method of damage grade classification which is based on 'structural performance characteristics' instead of 'fixed limiting values'. The usefulness of such definition is discussed as against the existing practice.

A Theoretical Investigation on Shakedown Analysis of Framed Structures (강뼈대 구조물의 소성안정 해석에 관한 이론적 연구)

  • Lee, Jong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.71-77
    • /
    • 1988
  • For the collapse of structures due to the variable repeated load, two types of collapse mechanisms, i.e., incremental collapse and alternating plasticity, exist. Under the similar variable repeated loading conditions there exists shakedown state in the structures. In shakedown state, the number of plastic hinges are not increased and all further loading will be resulted in the elastic moment changes. Namely, under the shakedown state, structures do not collapse. In this investigation, shakedown analysis are performed by composing new computer programs. Basic theories employed to compose the programs are as follows. 1. Newton-Raphson methods are added to the existing matrix method for the plastic analysis. 2. An effort to construct the stiffness of axial and bending springs attached at both ends of the member has been made. By using the programs developed, it is possible to anticipate the collapse mechanisms (Incremental collapse, alternating plasticity). Lastly for the verification of performance of the program, demonstration examples have been solved and the results are compared with other sources.

  • PDF

A Study on the Load Capacity Characteristics of the Externally Pressurized Air Lubricated Journal Bearings (외압을 받는 공기윤활 저어널 베어링의 부하특성에 관한 연구)

  • 김수태;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.231-240
    • /
    • 1988
  • An investigation is carried out for the load capacity characteristics of the externally pressurized air lubricated journal bearings both theoretically and experimentally. Theoretical analysis is made using the incremental method and the finite element method, and the discharge coefficient is considered. The experiments are performed for five bearings which are produced according to the rows of supply holes and the presence of poket or step. The results are compared with the numerical results. The present numerical results are in better agreement with the available experimental results than any other earlier numerical results for the bearings having one row and two rows of supply holes with pocket. The present numerical and experimental results show that the bearing with step has larger load capacity than that without step and that the load capacity increases as the clearance ratio increases.

Study of Forming Properties for an Edge Thickening Model Using the Finite Element Method (유한요소해석을 이용한 증육 모델의 성형특성 연구)

  • Cho, C.D.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This study examines the forming properties and forming loads needed to increase the edge thickness on the external face of a plate using finite element analysis(FEA). Recently, forming optimization techniques within FEA are being extensively used in designing the optimal forming conditions for processes like forging, extrusion, rolling, and spinning. Most of these existing forming operations involve reducing the volume per unit length, but research for increasing volume per unit length is not very extensive. For this study we chose an automotive engine flywheel which is a welded assembly of a plate and a gear with each component having a different thickness. We considered a forming technique to increase the thickness in order to allow the machining of the gear directly on the external face of plate alleviating the need for a weld. To study various forming techniques, we used the finite element method with the flow stress of material and incremental forming steps. We conclude from this study that the analysis of forming properties and forming loads by using the finite element analysis and testing is useful as a method to increase the thickness per unit length.

The Modified Power Flow Analysis in a Sense of Economic Load Dispatch (발전기 동일 증분 비용 할당을 위한 변형된 조류계산)

  • Jang, Gwang-Soo;Lee, Sang-Ho;Hur, Don
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • This paper suggests an extended power flow analysis algorithm based on a modified economic load dispatch concept. Meaningfully, the proposed method makes it possible to perform the power flow analysis without a slack bus. And the 'equal incremental cost' rule which is obtained by economic load dispatch prior to power flow is maintained even during the proposed power flow analysis. In this paper, both 5 - bus and 14 - bus power systems are used to offer the theoretical accuracy and practical applications of this algorithm.

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Elasto-Plastic Analysis of Plane Frame Structures using Timoshenko Beam Element (Timoshenko보 요소를 이용한 평면 뼈대구조의 탄-소성 해석)

  • 정동영;이정석;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.327-334
    • /
    • 2001
  • This paper presents a non-linear analysis procedure for plane frame structures by finite element formulation with assumptions of Timoshenko beam theory. Finite element displacement method based on Lagrangian formulation is used and two-noded and isoparametric line element is adopted to represent finite element model. The layered approach is used for the elasto-plastic analysis of the plane frame structures with rectangular and I cross sections. A load incremental method combined with the tangent stiffness and the initial stiffness methods for each load increment is used for the solution of non-linear equations. Numerical examples are presented to investigate the behavior and the accuracy of the elasto-plastic non-linear application and the results of this study are compared with other solutions using the concept of plastic hinge.

  • PDF