• Title/Summary/Keyword: load distribution

Search Result 3,617, Processing Time 0.034 seconds

Economical Installations and Regulations of Shunt Capacitors in A Distribution Line (배전선로에 있어서의 병렬 Coudenser의 경제적 설치 및 조정에 관한 연구)

  • 박영문
    • 전기의세계
    • /
    • v.15 no.5
    • /
    • pp.25-31
    • /
    • 1966
  • This paper derives the useful formulas for computing annual profits, and economical size, locations and regulating values of parallel shunt capacitors in case that they are installed in a distribution line. Inparticular, the derived formulas consider the influence of load variations in order to represent the actual load situations.

  • PDF

Optimal Distributed Computation with Communication Delays (통신지연이 있는 분산처리의 최적화)

  • Kim, Hyoung-Joong;Jee, Gyu-In;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.748-752
    • /
    • 1991
  • Tree network consisting of communicating processors is considered. The objective is to minimize the computation time by distributing the processing load to other nodes. The effect of the order of load distribution on the processing time is addressed. An algorithm which optimally determines the order of load distribution is developed. It is shown that the order depends only on the channel capacity between nodes but not on the computing capability of each node.

  • PDF

Cost-Benefit Analysis on Participation of High Efficient Equipment in Demand-Side Bidding (고효율기기의 수요측입찰 참여시의 비용-이익 분석)

  • Won Jong-Ryul;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.396-400
    • /
    • 2005
  • This paper proposes the cost analysis on the energy efficient equipment when this equipment is participated in the demand-side bidding. Conventional demand-side bidding is exercised through load re-distribution. However if this load reduction is exercised by the use of high efficient equipment, its effect will be assumed to be more economical. This paper analyses this cost-benefit effect of high efficient equipment in the demand-side bidding.

Optimal lateral load pattern for pushover analysis of building structures

  • Habibi, Alireza;Saffari, Hooman;Izadpanah, Mehdi
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 2019
  • Pushover analysis captures the behavior of a structure from fully elastic to collapse. In this analysis, the structure is subjected to increasing lateral load with constant gravity one. Neglecting the effects of the higher modes and the changes in the vibration characteristics during the nonlinear analysis are the main obstacles of the proposed lateral load patterns. To overcome these drawbacks, whereas some methods have been presented to achieve updated lateral load distribution, these methods are not precisely capable to predict the response of structures, precisely. In this study, a new method based on optimization procedure is developed to obtain a lateral load pattern for which the difference between the floor displacements of pushover and Nonlinear Dynamic Analyses (NDA) is minimal. For this purpose, an optimization problem is considered and the genetic algorithm is applied to calculate optimal lateral load pattern. Three special moment resisting steel frames with different dynamic characteristics are simulated and their optimal load patterns are derived. The floor displacements of these frames subjected to the proposed and conventional load patterns are acquired and the accuracy of them is evaluated via comparing with NDA responses. The outcomes reveal that the proposed lateral load distribution is more accurate than the previous ones.

Long Term Distribution Planning Process using the Forecasting Method of the Land Use (토지용도에 따른 부하예측을 이용한 중장기 배전계획 수립)

  • Kim, Joon-Oh;Park, Chang-Ho;Sun, Sang-Jin;Lee, Jae-Bong;Kwon, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1447-1449
    • /
    • 1999
  • The KEPCO is developing the load forecasting system using land-use simulation method and distribution planning system. A distribution planning needs the data of present loads, forecasted loads and substations. distribution lines information. By the distribution planning system, the distribution line designer determines the substations and feeder lines plan. This paper presents the method of formulation process for the long term load forecasting and optimal distribution planning, and describes the case study of long term distribution planning of Suwon-city according to the newly applied method.

  • PDF

A Study for the Voltage Analysis Method of Distribution Systems with Distributed Generation (분산전원이 도입된 배전계통의 전압해석 방법에 관한 연구)

  • 김태응;김재언
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • This paper presents a voltage analysis method of distribution systems interconnected with DG(Distributed Generation). Nowadays, small scale DG becomes to be introduced into power distribution systems. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only ULTC(Under Load Tap Changer). This paper presents a voltage analysis method of distribution systems with DC for proper voltage regulation of power distribution systems with ULTC. In order to develop the voltage analysis method, distribution system modeling method and advanced loadflow method are proposed. Proposed method has been applied to a 22.9 kV practical power distribution systems.

The Development of Fixing Equipment of the Unit Module Using the Probability Distribution of Transporting Load (운반하중의 확률분포를 활용한 유닛모듈 운반용 고정장치 개발)

  • Park, Nam-Cheon;Kim, Seok;Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4267-4275
    • /
    • 2015
  • Prefabricated houses are fabricated at the factory for approximately 60 to 80% of the entire construction process, and assembled in the field. In the process of transporting and lifting, internal and external finishes of the unit module are concerned about damages. The purpose of this study is to improve the fixing equipment by analyzing load behavior. The improved fixing equipment would minimize the deformation of internal and external finishes. In order to develop the improved fixing equipment, transporting load on the fixing equipment is analyzed using Monte Carlo simulations, and structural performance is verified by the non-linear finite element analysis. Statistical analysis shows load distribution of unit module is similar with extreme value distribution. Based on the statistical analysis and Monte Carlo simulation, the maximum transporting load is 28.9kN and 95% confidence interval of transporting load is -1.22kN to 9.5kN. The nonlinear structural analysis shows improved fixing equipment is not destructed to the limit load of 35.3kN and withstands the load-bearing in the 95% confidence interval of transporting load.

Effects of Lateral Bracing on the Load Distribution and Torsional Behaviors in Continuous Two-Girder Bridges (연속 2-거더교에서 수평브레이싱이 하중 분배 및 비틂 거동에 미치는 영향)

  • Hwang, Min Oh;Yoon, Tae Yang;Park, Yong Myung;Joe, Woom Do Ji;Hwang, Soon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.671-680
    • /
    • 2007
  • In this study, we performed a loading test to evaluate the effect of load distribution on continuous two-span plate-girder bridges with or without bottom lateral bracing using one-fifth-scale bridge specimens. From the test results, when specimens with lateral bracing were loaded eccentrically, the load distribution capacity of the concrete deck and cross beam improved and greater loading was distributed to the other side of the girder subjected to loading. The load distribution rate of the specimens with and without lateral bracing system was evaluated from the analytical model that was verified by the test results. From the result of the quantitative evaluation, when specimen without lateral bracing was loaded eccentrically, mostly 21% of loading according to the concrete deck was distributed to the other side of the girder subjected to loading. However, when specimen with lateral bracing was loaded eccentrically, the load distribution rate increased by 1.7 times as all cross beams, bracing and concrete deck participated in load distribution. The reason is that the torsional rigidity increased as the model with lateral bracing behaved like a pseudo-closed box section.

Structural Analysis Models to Develop Live Load Distribution Factors of Simply Supported Prestressed Concrete I-Girder Bridge (활하중 분배계수식 개발을 위한 I형 프리스트레스트 콘크리트 거더 교량의 구조해석 모델)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.91-101
    • /
    • 2008
  • Structural analysis models to develop live load distribution factors of simply supported prestressed concrete I-girder bridge should have the precision of the analysis results as well as modeling simplicity. This is due to the numerous frequency of structural analysis needed while developing live load distribution factors. In this study, an appropriate structural analysis model is selected by comparing previous researchs studies and models used in practical design. Also, the influence by the flexural stiffness of barrier and diaphragm on the live load distribution had been analyzed through comparing the numerical analysis and experimental tests. As a result, the model that the eccentric girder and the barrier and diaphragm are connected to the deck plate was appropriate in satisfying both accuracy and simplicity for structural analysis of simply supported prestressed concrete I-girder bridge. However, the barrier was analyzed to have insignificant influence on the live load distribution in spite of its variation of stiffness. The eccentric diaphragm showed little influence at 25% or higher of flexural stiffness. From the results, a model that the girder is rigidly connected to the deck plate in consideration of the eccentricity, the barrier is ignored and the whole section of diaphragm is supposed to be valid without eccentricity is decided as the most appropriate structural model to develop the live load distribution factors of simply supported prestressed concrete I-girder bridge in this study.