• Title/Summary/Keyword: load coefficient

Search Result 1,582, Processing Time 0.032 seconds

Reliability Evaluation of RF Power Amplifier for Wireless Transmitter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.154-157
    • /
    • 2008
  • A class-E RF(Radio Frequency) power amplifier for wireless application is designed using standard CMOS technology. To drive the class-E power amplifier, a class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. The reliability characteristic is improved when a finite-DC feed inductor is used instead of an RF choke with the load. After one year of operating, when the load is an RF choke the output current and voltage of the power amplifier decrease about 17% compared to initial values. But when the load is a finite DC-feed inductor the output current and voltage decrease 9.7%. The S-parameter such as input reflection coefficient(S11) and the forward transmission scattering parameter(S21) is simulated with the stress time. In a finite DC-feed inductor the characteristics of S-parameter are changed slightly compared to an RF-choke inductor. From the simulation results, the class-E power amplifier with a finite DC-feed inductor shows superior reliability characteristics compared to power amplifier using an RF choke.

A study on the Operating Characteristics of the Capsule-type Ice Storage System (캡슐형 빙축열 시스템의 운전특성에 관한 연구)

  • Kim, Kyung-Hwan;Cho, Sung-Woo;Choi, Jeong-Min;Ha, Suk-Young
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.199-204
    • /
    • 2005
  • The decrease of summer peak electric load of our country is very important. The government is arranging a lot of support policies and statutes. etc. to decrease of peak electric load. And ice storage system is known as one of the alternatives. The purpose of this study is to collect basic data for operating characteristics to plan the most suitable operation of capsule-type ice storage system. The storaging tank is designed to take charge 40% of total cooling load in building, In operation condition the storage tank took charge 50%. Coefficient Of Performance of daily screw refrigerator is around 4.

  • PDF

Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water (저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

A Study on the Short-term Load Forecasting using Support Vector Machine (지원벡터머신을 이용한 단기전력 수요예측에 관한 연구)

  • Jo, Nam-Hoon;Song, Kyung-Bin;Roh, Young-Su;Kang, Dae-Seung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.306-312
    • /
    • 2006
  • Support Vector Machine(SVM), of which the foundations have been developed by Vapnik (1995), is gaining popularity thanks to many attractive features and promising empirical performance. In this paper, we propose a new short-term load forecasting technique based on SVM. We discuss the input vector selection of SVM for load forecasting and analyze the prediction performance for various SVM parameters such as kernel function, cost coefficient C, and $\varepsilon$ (the width of 8 $\varepsilon-tube$). The computer simulation shows that the prediction performance of the proposed method is superior to that of the conventional neural networks.

Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles (순전기자동차용 타여자직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Development of Load Modeling of Locomotive using Velocity and Consumed Power (속도와 소비전력을 이용한 전기차의 부하모델 개발)

  • Kim Joorak;Jang Donguk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1352-1354
    • /
    • 2004
  • The accurate analysis on railway traction power system should be carried out a load forecast preferentially. Commonly, it has been performed through Train Performance Simulator (TPS). In the study focused on velocity or location of train, however, the electric power consumption have been computed by converting mechanical power according to given velocity. Therefore, this paper presents a development of a mathematical model for electric load. The proposed load model is expressed as polynomial to reflect the influence of variance of train speed, that is, the model expresses the power as a function of train speed. in this study, method of the least squares method is used to find each coefficient and field test is performed to acquire data, electric power and speed of train in commercial running line.

  • PDF

Short-Term Load Forecasting Exponential Smoothoing in Consideration of T (온도를 고려한 지수평활에 의한 단기부하 예측)

  • 고희석;이태기;김현덕;이충식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.730-738
    • /
    • 1994
  • The major advantage of the short-term load forecasting technique using general exponential smoothing is high accuracy and operational simplicity, but it makes large forecasting error when the load changes repidly. The paper has presented new technique to improve those shortcomings, and according to forecasted the technique proved to be valid for two years. The structure of load model is time function which consists of daily-and temperature-deviation component. The average of standard percentage erro in daily forecasting for two years was 2.02%, and this forecasting technique has improved standard erro by 0.46%. As relative coefficient for daily and seasonal forecasting is 0.95 or more, this technique proved to be valid.

  • PDF

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

Development of the Measurement System for Evaluating Mechanical Properties of Nano-diamond Coated Film (나노 다이아몬드 코팅박막의 기계적 특성 평가를 위한 계측시스템의 개발)

  • Kweon, Hyun Kyu;Lee, So Jin;Kweon, Yong Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • In this study, a new adhesion evaluating equipment and data processing methods were developed to overcome some limitations of existing evaluating equipment. Nano-diamond coated tool is a specimen of experiment. When applying frictional force and shear force on the specimen by a rotating polishing pad, delamination occurs at a moment. During each experiment, the vibration, load, and torque is obtained by accelerometer, loadcell and torque s+ kpensor. Frictional force and coefficient of friction are obtained by calculating torque and load. Based on FFT transformation, acceleration is processed and analyzed. As a result, the moment of delamination and the load at that time can be detected by the new developed equipment and measurement system. Finally, we call this load as an Adhesion force.

An exact solution of dynamic response of DNS with a medium viscoelastic layer by moving load

  • S.A.H. Hosseini;O. Rahmani;H. Hayati;M. Keshtkar
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.193-210
    • /
    • 2023
  • This paper aims to analyze the dynamic response of a double nanobeam system with a medium viscoelastic layer under a moving load. The governing equations are based on the Eringen nonlocal theory. A thin viscoelastic layer has coupled two nanobeams together. An exact solution is derived for each nanobeam, and the dynamic deflection is achieved. The effect of parameters such as nonlocal parameter, velocity of moving load, spring coefficient and the viscoelastic layer damping ratio was studied. The results showed that the effect of the nonlocal parameter is significantly important and the classical theories are not suitable for nano and microstructures.