• Title/Summary/Keyword: liver metabolism

Search Result 1,484, Processing Time 0.023 seconds

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

The Role of Fatty Acid Binding Protein in the Fatty Liver Induced by Alcohol or High Cholesterol Diet in Rats (알코올 및 고콜레스테롤 식이로 유도된 흰쥐의 지방간에서 지방산 결합단백질의 역할 및 특성)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.32 no.6
    • /
    • pp.628-636
    • /
    • 1999
  • There is a marked increase in geriatric disease, especially liver disease, due to the continuous increase in alcohol and fat consumption. Since the fatty liver, induced by alcohol or fat, is basically from abnormalities in the lipid metabolism, it is possible that fatty acid binding protein(FABP) which is related to the fatty acid metabolism may also be abnormal in these livers. FABP is a small molecular weight protein family present in cytosol in high concentration. It has been proposed as a fatty acid transfer protein and as a binding protein responsible for controlling intracellular free fatty acid concentration. In this research, we have examined the relationship between liver FABP and fatty liver induced by alcohol or high cholesterol diet. Rats were fed one of either semipurified liquid diets; control diet containing 65% carbohydrate, 20% protein, and 15% fat or high cholesterol diet containing 1%(w/w) cholesterol or alcohol diet containing 37% of alcohol instead of carbohydrate. After 5 weeks of feeding period, all rats received commercial chow diet for 5 weeks to examine recovery effect. Liver and blood samples were collected at 0, 1, 3, 5 and 10 weeks to analyze lipid compositions. FABP was purified from liver cytosol and injected to rabbit to obtain antiserum. Liver FABP amount was determined by SDS-PAGE and western blotting methods. Fatty acid binding capacity was determined by binding of 14Cpalmitate with the delipidated liver cytosol. Consumption of alcohol increased serum cholesterol, triglyceride concentration and decreased HDL-cholesterol concentration after 5 weeks. Serum apolipoprotein B concentration increased after 3 weeks and LDL-cholesterol and apolipoprotein A concentration changed after 1 week. Liver cholesterol and triglyceride concentration increased after 3 weeks. Consumption of high cholesterol diet changed liver and serum lipid composition after 3 weeks. Swiching to normal diet for 5 weeks did not normalize most of lipid composition in serum and liver except serum and liver except serum cholesterol, triglyceride and liver cholesterol. Liver cytosol FABP content and the fatty acid binding capacity decreased dramatically after 1 week with alcohol consumption. This results indicate that FABP content changes before the changes before the changes of blood or liver lipid composition, suggesting changes of FABP may cause development of the fatty liver induced by alcohol and can be used as an index of detecting a early development of fatty liver.

  • PDF

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

  • Lee, Young-Sun;Yi, Hyon-Seung;Suh, Yang-Gun;Byun, Jin-Seok;Eun, Hyuk Soo;Kim, So Yeon;Seo, Wonhyo;Jeong, Jong-Min;Choi, Won-Mook;Kim, Myung-Ho;Kim, Ji Hoon;Park, Keun-Gyu;Jeong, Won-Il
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.998-1006
    • /
    • 2015
  • Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knockout ($Raldh1^{-/-}$), $CCL2^{-/-}$ and $CCR2^{-/-}$ mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-${\gamma}$ in T cells. Moreover, interferon-${\gamma}$ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.

Effect of Hepatic Damage on the Toluene Metabolism in Carbon Tetrachloride Pretreated-Rats (흰쥐에 있어서 톨루엔 대사에 미치는 간손상의 영향)

  • Cha, Sang-Eun;Yoon, Chong-Guk;Lee, Sang-Il
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.321-328
    • /
    • 1998
  • This study was performed to evaluate the effect of liver damage on toluene metabolism in rats pretreated with carbon tetachloride. Liver damage in rats was induced by administration of 0.1ml of carbon tetrachloride per 100g of body wight intraperitoneally every day for four weeks except the last day before sacrifice. One day before sacrifice, toluene was administered to the animals instead of carbon tetrachloride. Rats were sacrificed at the 1st, the 2nd, the 3rd and the 4th week after the first administration of carbon tetachloride. Based on the histopathological findings, liver weight and serum alanine aminotransferase, the $CCl_4$-preteated group was found to have gradual severe liver damage. Especially the degree of liver injury became increasingly severe throughout the whole course of the experiment. The contnts of hippuric acid in urine lower in the all groups pretreated with $CCl_4$than that of the control. The contents of hepatic cytochrome P450(CYP), benzylalcohol dehydrogenase and benzaldehyde dehydrogenase activities were decreased in $CCl_4$-pretreated rats than those of the control. The $CCl_4$treated animals showed the gradual decreased activities of these enzyme as injection times elapsed. Km values of the benzylalcohol dehydrogenase in pooled liver samples from $CCl_4$-pretreated or control groups were similar. On the other hand, Vmax values of the $CCl_4$-pretreated group was lower than of the control. Therefore, it can be concluded that reduction of the toluene metabolism in damaged rat liver induced with $CCl_4$was due to the inhibition of CYP content, bezylalcohol and benzaldehyde dehydrogenase activities which related with toluene metabolic enzyme system.

  • PDF

LC-MS-based metabolomic analysis of serum and livers from red ginseng-fed rats

  • Kim, Hyun-Jin;Cho, Chang-Won;Hwang, Jin-Taek;Son, Nari;Choi, Ji Hea;Shim, Gun-Sub;Han, Chan-Kyu
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.371-378
    • /
    • 2013
  • Serum and liver metabolites in rats fed red ginseng (RG) were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass data were analyzed by partial least squares-discriminant analysis (PLS-DA) to discriminate between control and RG groups and identify metabolites contributing to this discrimination. The RG group was clearly separated from the control group on PLS-DA scores plot for serum samples, but not liver samples. The major metabolites contributing to the discrimination included lipid metabolites (lysophosphatidylcholine, acyl-carnitine, and sphingosine), isoleucine, nicotinamide, and corticosterone in the serum; the blood levels of all but isoleucine were reduced by RG administration. Not all metabolites were positively correlated with the health benefits of RG. However, the blood levels of lysophosphatidylcholine, which stimulate various diseases, and long-chain acylcarnitines and corticosterone, which activate the stress response, were reduced by RG, suggesting long-term RG might relieve stress and prevent physiological and biological problems.

Effect of Water and Ethanol Extracts of Persimmon Leaf and Green Tea Different Conditions on Lipid Metabolism and Antioxidative Capacity in 12-month-old Rats (추출 조건을 달리한 감잎과 녹차의 물 및 에탄올 추출물이 노령쥐의 지방대사와 항산화능에 미치는 영향)

  • 김성경;이혜진;김미경
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.499-512
    • /
    • 2001
  • This study was performed to investigate effects of dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea on lipid metabolism, lipid peroxidation and antioxidative enzyme activity in 12-month-old rats. Fifty-four male Sprague-Dawley rats weighing 542$\pm$4.5g were blocked into groups according to their body weight and were raised for four weeks with the diets containing 5%(w/w) dried leaf powders of persimmon(Diospyros kaki Thunb) and green tea(Camellia Sinensis O. Ktze), water or 75% and 95% ethanol extracts from same amount of each dried tea powder. Food intake was not significantly different among all groups, but weight gain of green tea powder group was significantly lower than that of control group. Plasma and liver lipid levels of all the tea diet groups were lower than those of control group. Especially, 75% ethanol extract of persimmon leaf decreased total lipid and triglyceride concentrations in plasma and 95% ethanol extract of persimmon leaf decreased liver total lipid level. However, there was no difference between 75% ethanol extracts groups and 95% ethanol extracts groups in lipid metabolism. Superoxide dismutase(SOD) and catalase activities in erythrocyte were remarkably increased by all the green tea diets. SOD, catalase and glutathione peroxidase activities in liver were increased by the feeding of ethanol extracts from green tea and persimmon leaf powder. Liver xanthine oxidase activity was not different among all groups. Plasma Thiobarbirutic acid reactive substance(TBARS) concentrations of all the green tea diet groups were significantly low. It was thought that high flavonoids in green tea inhibited plasma lipid peroxidation by promoting SOD, catalase activities in erythrocyte. 95% ethanol extract of persimmon leaf also inhibited plasma lipid peroxidation by high vitamin E and beta-carotene. Persimmon leaf powder decreased liver TBARS concentration by vitamin E, betacarotene and vitamin C and by increasing activities of antioxidative enzymes with flavonoids. In conclusion, dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea were effective in lowering lipid levels and inhibiting lipid peroxidation in 12-month-old rats. Above all, ethanol extracts of persimmon leaf decreased plasma and liver lipid levels and persimmon leaf powder effectively inhibited liver lipid peroxidation. Extracts of green tea leaf inhibited plasma lipid peroxidation. In lowering lipid levels and inhibiting lipid peroxidation, ethanol extracts were more effective than water extracts, but there was no difference between 75% ethanol extracts and 95% ethanol extracts in lipid metabolism. (Korean J Nutrition 34(5) : 499~512, 2001)

  • PDF

Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA) Induced by High-concentrate Diet

  • Jiang, X.Y.;Ni, Y.D.;Zhang, S.K.;Zhang, Y.S.;Shen, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1181-1188
    • /
    • 2014
  • The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA) induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF) diet or a high-concentrate (HC) diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.

STEREOSELECTIVE METABOLISM AND INHIBITION OF LANSOPRAZOLE ENANTIOMERS ON HUMAN LIVER CYPs.

  • Kim, Kyung-Ah;Yoon, Young-Ran;Shin, Jae-Gook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.196-196
    • /
    • 2001
  • Stereoselective metabolism and inhibitory potential of lansoprazole enantiomers were evaluated from the incubational studies of human liver microsomes and eDNA-expressed CYP isoforms in vitro. The formation of lansoprazole sulfone from both enantiomers appeared to be catalyzed by single and low affinity enzyme. Lansoprazole 5-hydroxylation, however, appeared to be mediated by two kinetically distinct CYP enzymes.(omitted)

  • PDF

The Effects of Some Oriental Herbs Which Have Been Used in the Treatment of Alcoholic Diseases on Alcoholic Metabolism and Alcoholic Liver Damages (주상에 활용되는 수종의 한약물이 알콜올대사 및 간장해에 미치는 영향)

  • 박형규;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.186-198
    • /
    • 2000
  • Objectives : This experiment was conducted to verify the effects of some oriental herbs(Alny Cortex et Ramulus, Artemisiae Capillaris Herba, Aurantii Nobilis Pericarpium, Giseng Radix, Hoveniae Semen, Puerariae Flos, Puerariae Radix, and Xanthii Fructus) which have been used in the treatment of alcoholic diseases, on alcoholic metabolism, and on alcoholic liver damage. Methods : The effects of the herbs on the activities of alcohol dehydrogenase(ADH), aldehyde dehydrogenase(ALDH) were evaluated and their protective effects of liver function and cells from alcoholic damage were analysed. For the evaluation of the protective effects, the levels of glucose, triglyceride, BUN, AST, and ALT in serum of rats were measured. Results and Conclusions : It is concluded that Puerariae Radix interferes with the ADH activity directly, thereby reducing the toxicity of alcohol, resulting in enhancing alcohol-tolerance and protecting liver functions. Also Artemisiae Capillaris Herba interferes both ADH and ALDH activities. Isolation of the biologically active compounds from Puerariae Radix and its detailed characterization are matters for future research.

  • PDF