Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13729

Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA) Induced by High-concentrate Diet  

Jiang, X.Y. (College of Veterinary Medicine, Nanjing Agricultural University)
Ni, Y.D. (College of Veterinary Medicine, Nanjing Agricultural University)
Zhang, S.K. (College of Veterinary Medicine, Nanjing Agricultural University)
Zhang, Y.S. (College of Veterinary Medicine, Nanjing Agricultural University)
Shen, X.Z. (College of Veterinary Medicine, Nanjing Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.8, 2014 , pp. 1181-1188 More about this Journal
Abstract
The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA) induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF) diet or a high-concentrate (HC) diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.
Keywords
Liver; Metabolism; High-concentrate; Subacute Ruminal Acidosis [SARA];
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schenkman, J. B. and I. Jansson. 2003. The many roles of cytochrome b5. Pharmacol. Ther. 97:139-152.   DOI   ScienceOn
2 Stone, W. 2004. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J. Dairy Sci. 87:13-26.   DOI   ScienceOn
3 Wang, W. A., J. Groenendyk, and M. Michalak. 2012. Calreticulin signaling in health and disease. Int. J. Biochem. Cell Biol. 44: 842-846.   DOI   ScienceOn
4 Yan, Q., J. E. Murphy-Ullrich, and Y. Song. 2011. Molecular and structural insight into the role of key residues of thrombospondin-1 and calreticulin in thrombospondin-1- calreticulin binding. Biochemistry 50:566-573.   DOI   ScienceOn
5 Izumi, T. and M. Yamaguchi. 2004. Overexpression of regucalcin suppresses cell death in cloned rat hepatoma h4-ii-e cells induced by tumor necrosis factor-alpha or thapsigargin. J. Cell. Biochem. 92:296-306.   DOI   ScienceOn
6 Jianzhen, H., M. Haitian, Y. Liming, and Z. Sixiang. 2007. Developmental changes of protein profiles in the embryonic sanhuang chicken liver. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 54:464-469.   DOI   ScienceOn
7 Kleen, J. L., G. A. Hooijer, J. Rehage, and J. P. Noordhuizen. 2003. Subacute ruminal acidosis (sara): A review. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 50:406-414.   DOI   ScienceOn
8 Kjeldgaard, M. Nissen, P. Thirup, and S. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1:35-50.   DOI   ScienceOn
9 Krause, K. M. and G. R. Oetzel. 2005. Inducing subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 88:3633-3639.   DOI   ScienceOn
10 Lapierre, H. and G. E. Lobley. 2001. Nitrogen recycling in the ruminant: A review. J. Dairy Sci. 84:E223-E236.   DOI   ScienceOn
11 Nocek, J. E. 1997. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80:1005-1028.   DOI   ScienceOn
12 Obeid, M., A. Tesniere, T. Panaretakis, R. Tufi, N. Joza, P. van Endert, F. Ghiringhelli, L. Apetoh, N. Chaput, C. Flament, E. Ullrich, S. de Botton, L. Zitvogel, and G. Kroemer. 2007. Ectocalreticulin in immunogenic chemotherapy. Immunol. Rev. 220:22-34.   DOI   ScienceOn
13 Palmer, J. L., R. H. Abeles. 1979. The mechanism of action of Sadenosylhomocysteinase. J. Biol. Chem. 254:1217-1226.
14 Porter, T. D. 2002. The roles of cytochrome b5 in cytochrome p450 reactions. J. Biochem. Mol. Toxicol. 16:311-316.   DOI   ScienceOn
15 DeVries, T. J., K. A. Beauchemin, F. Dohme, and K. S. Schwartzkopf-Genswein. 2009. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. J. Dairy Sci. 92:5067-5078.   DOI   ScienceOn
16 Sauvant, D., F. Meschy, and D. Mertens. 1999. Components of ruminal acidosis and acidogenic effects of diets. Prod. Anim. 12:49-60.
17 Candiano, G., M. Bruschi, L. Musante, L. Santucci, G. M. Ghiggeri, B. Carnemolla, P. Orecchia, L. Zardi, and P. G. Righetti. 2004. Blue silver: A very sensitive colloidal coomassie g-250 staining for proteome analysis. Electrophoresis 25:1327-1333.   DOI   ScienceOn
18 Chen, J., X. Tang, Y. Zhang, H. Ma, and S. Zou. 2010. Effects of maternal treatment of dehydroepiandrosterone (dhea) on serum lipid profile and hepatic lipid metabolism-related gene expression in embryonic chickens. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 155:380-386.   DOI   ScienceOn
19 Dragomir, C., D. Sauvant, J. L. Peyraud, S. Giger-Reverdin, and B. Michalet-Doreau. 2008. Meta-analysis of 0 to 8 h post-prandial evolution of ruminal ph. Animal. 2:1437-1448.
20 Fairfield, A. M., J. C. Plaizier, T. F. Duffield, M. I. Lindinger, R. Bagg, P. Dick, and B. W. McBride. 2007. Effects of prepartum administration of a monensin controlled release capsule on rumen ph, feed intake, and milk production of transition dairy cows. J. Dairy Sci. 90:937-945.   DOI   ScienceOn
21 Fella, K., M. Gluckmann, J. Hellmann, M. Karas, P. J. Kramer, and M. Kroger. 2005. Use of two-dimensional gel electrophoresis in predictive toxicology: Identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis. Proteomics 5:1914-1927.   DOI   ScienceOn
22 Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.
23 Gozho, G. N., J. C. Plaizier, D. O. Krause, A. D. Kennedy, and K. M. Wittenberg. 2005. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 88:1399-1403.   DOI   ScienceOn
24 AlZahal, O., B. Rustomo, N. E. Odongo, T. F. Duffield, and B.W. McBride. 2007. Technical note: A system for continuous recording of ruminal ph in cattle. J. Anim. Sci. 85:213-217.   DOI   ScienceOn
25 Beauchemin, K. A., W. Z. Yang, and L. M. Rode. 2001. Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. J. Anim. Sci. 79:1925-1936.
26 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.   DOI   ScienceOn
27 Brossard, L., C. Martin, and B. Michalet-Doreau. 2003. Ruminal fermentative parameters and blood acido-basic balance changes during the onset and recovery of induced latent acidosis in sheep. Anim. Res. 52:513-530.   DOI   ScienceOn
28 Dijkstra, J., H. Boer, J. Van Bruchem, M. Bruining, and S. Tamminga. 1993. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, ph and rumen liquid volume. Br. J. Nutr. 69:385-396.   DOI
29 Schoonjans, K., M. Watanabe, H. Suzuki, A. Mahfoudi, G. Krey, W. Wahli, P. Grimaldi, B. Staels, T. Yamamoto, and J. Auwerx. 1995. Induction of the acyl-coenzyme a synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the c promoter. J. Biol. Chem. 270:19269-19276.   DOI   ScienceOn