• Title/Summary/Keyword: liver cells

Search Result 1,969, Processing Time 0.027 seconds

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

TRAIL in Combination with Subtoxic 5-FU Effectively Inhibit Cell Proliferation and Induce Apoptosis in Cholangiocarcinoma Cells

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6991-6996
    • /
    • 2015
  • In the past decade, the incidence and mortality rates of cholangiocarcinoma (CCA) have been increasing worldwide. The relatively low responsiveness of CCA to conventional chemotherapy leads to poor overall survival. Recently, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) has emerged as the most promising anti-cancer therapeutic agent since it is able to selectively induce apoptosis of tumor cells but not normal cells. In this study, we aimed to investigate the therapeutic effect of TRAIL in CCA cell lines (M213, M214 and KKU100) compared with the immortal biliary cell line, MMNK1, either alone or in combination with a subtoxic dose of 5-fluorouracil (5-FU). We found that recombinant human TRAIL (rhTRAIL) was a potential agent which significantly inhibited cell proliferation and mediated caspase activities (caspases 8, 9 and 3/7) and apoptosis of CCA cells. The combined treatment of rhTRAIL and 5-FU effectively enhanced inhibition of CCA cell growth with a smaller effect on MMNK1. Our finding suggests TRAIL to be a novel anti-cancer therapeutic agent and advantage of its combination with a conventional chemotherapeutic drug for effective treatment of CCA.

강원도산 참당귀와 일본산 일당귀의 생리 활성 성분 탐색

  • Ham, Moon-Sun;Kim, Seung-Su;Hong, Jong-Su;Lee, Jin-Ha;Chung, Eul-Kwon;Park, Young-Shik;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.624-629
    • /
    • 1996
  • The ethanol extracts from Angelica gigas Nakai and Angelica acutiloba Kitagawa were fractionated to diethyl ether and aqueous partitions. Both partitions had strong antimutagenic effect on the MNNG (N-methyl-N-nitro-N-nitrosoguanidine) by Ames mutagenicity test. Diethyl ether fractions exhibited the greatest antimutagenic effect suppressing the mutagenicity of MNNG with inhibition of 78-80%. The ethanol extracts from both species showed the inhibitory effect on the growth of several human cancer cell lines. Especially, the diethyl ether fraction from ethanol extracts was most effective on human hepatocellular carcinoma cells, inhibiting 90-95% of cell growth. However, the aqueous fractions had least inhibition activity on many cancer cells. There was little cytotoxicity on human normal liver cell by ethanol extracts. Diethyl ether fraction from Angelica gigas Nakai ethanol extract had cytotoxicity less than 20% on human normal liver cells, compared with that from Angelica acutiloba Kitagawa ethanol exract. The adding of 0.5 (g/l) of diethyl ether fractions of Angelica gigas Nakai or Angelica acutiloba Kitagawa increased immune activity by enhacing human B and T cells up to three to four times. It was proven that diethyl ether fraction (0.7 g/1) from Angelica gigas Nakai could control blood pressure by suppressing angiotensin converting enzyme activity up to 98%. From TLC, it was appeared that both of diethyl ether partitions had umbelliferon, known to one of active substances from Angelica gigas Nakai and Angelica acutiloba Kitagawa.

  • PDF

Hepatic Fibrosis Inhibitory Effect of Peptides Isolated from Navicula incerta on TGF-β Induced Activation of LX-2 Human Hepatic Stellate Cells

  • Kang, Kyong-Hwa;Qian, Zhong-Ji;Ryu, BoMi;Karadeniz, Fatih;Kim, Daekyung;Kim, Se-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.124-132
    • /
    • 2013
  • In this study, novel peptides (NIPP-1, NIPP-2) derived from Navicula incerta (microalgae) protein hydrolysate were explored for their inhibitory effects on collagen release in hepatic fibrosis with the investigation of its underlying mechanism of action. TGF-${\beta}1$ activated fibrosis in LX-2 cells was examined in the presence or absence of purified peptides NIPP-1 and NIPP-2. Besides the mechanisms of liver cell injury, protective effects of NIPP-1 and NIPP-2 were studied to show the protective mechanism against TGF-${\beta}1$ stimulated fibrogenesis. Our results showed that the core protein of NIPP-1 peptide prevented fibril formation of type I collagen, elevated the MMP level and inhibited TIMP production in a dose-dependent manner. The treatment of NIPP-1 and NIPP-2 on TGF-${\beta}1$ induced LX-2 cells alleviated hepatic fibrosis. Moreover, ${\alpha}$-SMA, TIMPs, collagen and PDGF in the NIPP-1 treated groups were significantly decreased. Therefore, it could be suggested that NIPP-1 has potential to be used in anti-fibrosis treatment.

Cytotoxic Effects of an Oncolytic Adenoviral Vector AdLPCDIRESE1A in Hepatocellular Carcinoma Cells (암세포 용해성 AdLPCDIRESE1A 벡터의 간암 세포독성효과)

  • Chung, In-Jae
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.75-79
    • /
    • 2011
  • The replication competent adenoviral vector (AV), AdLPCDIRESE1A was generated and reported previously to have cytotoxic effects in some cell lines. In AdLPCDIRESE1A, the expression of cytosine deaminse (CD) and E1A genes are under the control of tumor-specific L-plastin promoter. CD enzyme can deaminate the nontoxic prodrug 5-fluorocytosine (5-FC) to the toxic 5-fluorouracil (5-FU). E1A gene is essential for viral replication. Primary liver cancer, most of which is hepatocellular carcinoma (HCC), is the third common leading cancer in Korea. Thus, we have conducted in vitro preclinical study to evaluate effectiveness of AdLPCDIRESE1A on HCC. The efficacy of cytotoxicity was measured by generation of cytopathic effect (CPE) and cell counting. We infected HepG2 cells with various MOI of vector alone or concurrent with 5-FC. Exposure of cells to AdLPCDIRESE1A generated a significant cytotoxic effect as compared to the control. Almost 83% of the cell had manifested the characteristic cytotoxic effect on day 9 after infection of cells with 10 MOI of vector. We also observed the additive cytotoxic effects when AdLPCDIRESE1A vector had been coadministrated with 5-FC. The results suggest that the use of AdLPCDIRESE1A/5FC may be value in treatment of liver cancer. Further animal studies are needed for clinical trial.

Appearance frequency of spermatozoa bearing B-body in semen of Korean native bull and cells bearing F-body in mouse tissues (한우 정액에 B-body 보유 정자와 마우스 조직에 F-body 부유 세포의 출현율)

  • Kwak, Soo-doog;Kang, Won-hwa;Park, Sung-shik
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.591-596
    • /
    • 1993
  • The smear preparations of the semen from Korean native bull and the tissue preparations of the organs from male and female mice were performed by fluorescent staining method. More than 600 spermatozoa per straw from two semen straw groups and more than 300 cells per mouse organ from two mice per sex were observed and then the ratio of spermatozoa bearing B-body and the cells bearing F-body were assessed, respectively. 1. The ratios of spermatozoa bearing B-body in semen of Korean native bull were $37.3{\pm}3.1%$. 2. The ratios of cells bearing F-body in the organs of mice were $63.5{\pm}4.5%$ in male tissues and $7.5{\pm}3.2%$ in female tissues. 3. The organs with higher appearance frequency of F-body were ordered as brain, kidney, stomach, lung, testis, liver, small intestine, spleen and pancreas in male mice and pancreas, small intestine, liver, brain, kidney, lung, spleen and stomach in female mice.

  • PDF

A Comparative Study of Korean mistletoe lectin and bee venom on mechanism in inducing apoptosis of Hep G2, a liver cancer cell

  • Lim, Seong-Woo
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.158-170
    • /
    • 2018
  • Objectives: The objective of this study is Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) to experimental prove comparative study of VCA and BV on the anti-cancer effect and mechanisms of action. Methods: In this study, it was examined in a human hepatocellular carcinoma cell line, Hep G2 cells. Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay in vitro. VCA and BV killed Hep G2 cells in a time- and dose-dependent manner. Results: The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action was examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including SAPK/JNK, MAPK and p38. BV also activated PARP-1, MAPK, p38 but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. Conclusion: We examined the involvement of kinase in VCA or BV - induced apoptosis by using kinase inhibitors. VCA-induced apoptosis was partially inhibited by in the presence.

Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity

  • Lee, Seunghyeong;Byun, Jun-Kyu;Kim, Na-Young;Jin, Jonghwa;Woo, Hyein;Choi, Yeon-Kyung;Park, Keun-Gyu
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.459-464
    • /
    • 2022
  • Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer.

Protective Effects of Curcumin on CCl4-Induced Hepatic Fibrosis with High Fat Diet in C57BL/6 Mice (C57BL/6 마우스에서 고지방 식이와 CCl4로 유발한 간섬유증에 미치는 커큐민의 보호효과)

  • Jekal, Seung-Joo;Min, Byung Woon;Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.251-258
    • /
    • 2015
  • Curcumin, a major polyphenolic compound of turmeric, is well known to prevent non-alcoholic steatohepatitis (NASH) related to obesity. The aim of the study was to investigate the effect of curcumin on hepatic fibrosis induced by carbon tetrachloride ($CCl_4$) in obese mice. $CCl_4$ was administrated in mice fed a normal diet (ND) or a high fat diet (HFD) for 7 weeks together with or without curcumin. It was conducted to examine for metabolic profiles, adipocyte size, and liver fibrosis by serum biochemistry, histology and immunohistochemistry. Also, Apoptosis of hepatic cells was determined by the TUNEL method. Treatment with curcumin significantly lowered the body weight, fasting glucose, serum AST and ALT, and decreased the adipocyte size, the number of macrophage and mast cells in adipose tissue, and collagen deposition in liver tissue in the HFD+$CCl_4$ group compared with the findings of the HFD+$CCl_4$ group. In contrast, treatment with curcumin on the ND+$CCl_4$ group did not show a significant difference except the body weight and mast cell number when compared with the ND+$CCl_4$ group. Furthermore, curcumin significantly reduced the number of parenchymal apoptotic cells, whereas it increased the number of non-parenchymal apoptotic cells, especially resembling an activated hepatic stellate cell in the liver. Taken together, this data suggests that curcumin might be an effective antifibrotic drug for the prevention of liver disease progression in obese mice. Thus, the development of curcumin as a therapy for obesity and liver fibrosis is supported.

Ethyl acetate fraction of GGEx18 modulates fatty acid β-oxidizing enzymes (In vitro 동물세포에서 GGEx18의 ethyl acetate 분획물에 의한 지방산 β-산화효소 유전자 발현의 조절)

  • Joo, Byung-Soo;Lee, Hee-Young;Lee, Hye-Rim;Yoon, Mi-Chung;Seo, Bu-Il;Kim, Beom-Hoi;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2012
  • Objectives : This study was undertaken to investigate the effects of the GGEx18 ethyl acetate fraction (EF) on lipid accumulation and gene expression of fatty acid-oxidizing enzymes using 3T3-L1 adipocytes, C2C12 skeletal muscle cells, and NMu2Li liver cells. Methods : PPAR${\alpha}$, AMPK and UCPs transactivation was examined in NMu2Li hepatocytes, C2C12 myocytes, and 3T3-L1 preadipocytes using transient transfection assays. Results : 1. Compared with control, EF significantly increased the mRNA expression of VLCAD in 3T3-L1 adipocytes. 2. Compared with control, EF (0.1 ${\mu}g/ml$) significantly inhibited lipid accumulation in 3T3-L1 adipocytes. 3. EF significantly increased the mRNA expression of AMPK${\alpha}$1, AMPK${\alpha}$2 and PPAR${\alpha}$ in C2C12 skeletal muscle cells compared with control. 4. EF significantly increased the mRNA expression of genes involved in fatty acid ${\beta}$-oxidation, such as thiolase, MCAD, and CPT-1 in C2C12 skeletal muscle cells compared with control. 5. EF significantly increased the mRNA expression of UCP2 involved in energy expenditure in C2C12 skeletal muscle cells compared with control. 6. Compared with control, EF (10 ${\mu}g/ml$) significantly inhibited lipid accumulation in C2C12 skeletal muscle cells. 7. EF (10 ${\mu}g/ml$) significantly increased the mRNA expression of ACOX, HD, VLCAD and MCAD in NMu2Li liver cells compared with control. Conclusions : These results suggest that EF may prevent obesity by increasing the mRNA expression of mitochondrial fatty acid ${\beta}$-oxidizing enzymes in 3T3-L1 adipocytes, by not only regulating the fatty acid oxidation through activation of AMPK and PPAR${\alpha}$, but also increasing the UCP2 mRNA expression in C2C12 skeletal muscle cells, and by stimulating the mRNA expression of fatty acid-oxidizing enzymes in NMu2Li liver cells.