• Title/Summary/Keyword: liver cells

Search Result 1,969, Processing Time 0.031 seconds

Identification and Purification of a Normal Rat Liver Plasma Membrane Surface Protein which Disappears after Chemical Carcinogenesis

  • Kim, Min-Young;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.504-508
    • /
    • 1995
  • The electrophoretic patterns of plasma membrane surface proteins of normal rat liver cells and rat hepatomas were compared in 10% non-denaturing and 7-15% gradient non-denaturing gel. Chemical carcinogens, 2-Me DAB (2-methyl-4-dimethylaminoazobenzene) and DENA (diethylnitrosamine), were used to induce hepatoma in rats. One protein which disappeared in hepatoma was identified in normal rat liver by non-denaturing gel electrophoresis. Rabbit antisera were raised against this specific protein, and the protein was purified by Sephacryl S-200 column and immunoaffinity chromatography using the purified antibody. The purified protein showed two bands of molecular weights approximately 50 $kD_{\alpha}$ and 52 $kD_{\alpha}$ by SDS-polyacrylamide gel electrophoresis, which reacted specifically with the antibody. However only one band was observed in non-denaturing gel and also in isoelectric focusing with a pI value of 6.6. This study showed the existence of an unique protein on the plasma membrane surface of normal rat liver cells which disappeared in rat hepatomas induced by chemical carcinogens.

  • PDF

Red Ginseng Extract Improves Liver Fibrosis in Mice Treated with the Endocrine Disruptor Bisphenol A (내분비교란물질 비스페놀 A를 처리한 마우스에서 홍삼 추출물의 간 섬유화 개선)

  • Choi, Jehun;Park, Chun Geon;Seo, Kyoung Hee;Kim, Hyung Don;Yoon, Ji Hye;Ahn, Young Sup;Kim, Jin Seong
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Bisphenol A (BPA), a known endocrine disruptor, induces toxicity in cells and in experimental animals. Ginseng extracts were evaluated to determine whether they can inhibit BPA-induced toxicity. The antioxidant activity of fresh ginseng extract (WGE), dried white ginseng extract (DGE), and dried red ginseng extract (RGE) was measured using the DPPH assay. WGE and RGE increased DPPH free radical scavenging activity. Cell viability was measured in HepG2 cells following treatment with BPA and ginseng extracts using the MTT assay. DGE and RGE increased HepG2 cell viability following treatment with $200{\mu}M$ BPA. RGE reduced levels of biochemical markers of liver damage, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) that increased in mice following treatment with BPA. In addition, the regeneration and proliferation of damaged liver cells were significantly increased in RGE-treated mice. Moreover, RGE inhibited hepatic fibrosis in the surrounding area and in the central vein of the liver microstructure. RGE also significantly inhibited BPA-induced cytotoxicity. In addition, RGE protected liver damage and regenerated liver tissues in BPA-treated animals. These results show that RGE may represent a potential candidate drug for the treatment and prevention of liver damage caused by environmental toxins.

Potential Roles of Hedgehog and Estrogen in Regulating the Progression of Fatty Liver Disease (지방간 진행 조절에 대한 헤지호그와 에스트로겐의 잠재적 역할)

  • Hyun, Jeong-Eun;Jung, Young-Mi
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1795-1803
    • /
    • 2011
  • Non-alcoholic fatty liver disease accompanies the rise in the prevalence of obesity, diabetes and the tendency toward high-fat dietary habits. Specifically, the higher prevalence of non-alcoholic fatty liver disease in men and postmenopausal women seems to be caused by the protective effects of estrogen against liver fibrosis, or lack thereof. There are no effective preventive therapies for liver diseases because the mechanisms underlying the progression of fatty liver diseases to chronic liver diseases and the protective effects of estrogen against fibrogenesis remain unclear. Recently, it has been reported that the hedgehog signaling pathway plays an important role in the progression of chronic liver diseases. Hedgehog, a morphogen regulating embryonic liver development, is expressed in injured livers but not in adult healthy livers. The level of hedgehog expression parallels the stages of liver diseases. Hedgehog induces myofibroblast activation and hepatic progenitor cell proliferation and leads to excessive liver fibrosis, whereas estrogen inhibits the activation of hepatic stellate cells to myofibroblasts and prevents liver fibrosis. Although the mechanism underlying the opposing actions of hedgehog and estrogen on liver fibrosis remain unclear, the suppressive effects of estrogen on the expression of osteopontin, a profibrogenic extracellular matrix protein and cytokine, and the inductive effects of hedgehog on osteopontin transcription suggest that estrogen and hedgehog are associated with liver fibrosis regulation. Therefore, further research on the estrogen-mediated regulatory mechanisms underlying the hedgehog-signaling pathway can identify the mechanism underlying liver fibrogenesis and contribute to developing therapies for preventing the progression of fibrosis to chronic liver diseases.

The Effects of Ka-Mi-Chung-Gan-Tang on Rat with Alcoholic Fatty Liver (가미청간탕(加味淸肝場)이 Rat의 알콜성 지방간에 미치는 영향)

  • Zheng, Cheng-Xuan;Yim, Dong-Sool;Lee, Sook-Yeon
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.229-232
    • /
    • 2004
  • Chronical intake of alcohol can cause alcoholic fatty liver. Fatty liver is caused by fat infiltration: the state of high rate of fat in liver cells and by losing the balance between the synthesis and the secretion of fatty acid. It could be developed into liver necrosis and cirrhosis. Ka-Mi-Chung-Gan-Tang (KMCGT) is a decoction used for fatty liver as oriental medicines in China. The prescription is composed of Ginseng Radix, Bupleuri Radix, Scutellariae Radix, Pinelliae Tuber, Artemisiae capillaris Herba, Gardeniae Fructus, Zingiberis Rhizoma, Zizyphi Fructus and Glycyrrhizae Radix etc. We have induced alcoholic fatty liver by ethanol administration (6 g/kg, single dose/day, for a week) on rats and observed changes of triglyceride, cholesterol and lipid peroxidation in liver tissues of them. Also we checked the activities of GOT and GPT in blood of rats. KMCGT inhibited significantly the increase of triglyceride, cholesterol, lipid peroxidation level and effectively the increase of malondialdehyde (MDA).

Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향)

  • Kim, Yoon Young;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.

Toxic Reduction Effect of Vanadium Yeast (Vanadium Yeast의 독성저감 효과)

  • 박승희;정규혁
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.156-163
    • /
    • 2001
  • Vanadium has been known as environmental polluants resulted from the burning of fossil fuels in nature. It led to toxic responses by prooxidant activity, inducing free radicals and the accumulation in the tissues. Recently, there has been growing interest in an essential nutritional requirement of vandium and especially the treatment of diabetes. But because of its strong toxicity, thease chemicals have narrow safety margin. In order to reduce metal toxicity, and increase absorption and biological activities, metal ions such as selenium and chromium were uptaken in yeast cells. In this study, Vanadium yeast was prepared by uptaking vanadate in yeast cells. Vanadate induced hematological and biochemical changes in the experimental rat blood were inhibited by the treatments of vanadium yeast. Lipid peroxidation and catalase activity were significantly increased in kidney and liver after a single intraperitoneal injection of vanadate to rats. However, these observations were apparently reduced in the vanadium yeast treated group. Vanadium amount in blood, kidney and liver after a single intraperitoneal injection of vanadium yeast was significantly reduced than that of vanadate treated group. In conclusion, vanadium yeast uptaken vanadate in yeast cells could reduce toxic effects of vanadate.

  • PDF

Hepatoprotective Constituents of Cudrania tricuspidata

  • Tian Yu-Hua;Kim Hyun-Chul;Cui Jiong-Mo;Kim Youn-Chul
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.44-48
    • /
    • 2005
  • Phytochemical investigation of the MeOH extract of the root barks of Cudrania tricuspidata Bureau (Moraceae), as guided by hepatoprotective activity in vitro, furnished four isoprenylated xanthones, cudratricusxanthone A (1), cudraxanthone L (2), cudratricusxanthone E (3), and macluraxanthone B (4). All of these compounds showed the significant hepatoprotective effect on tacrine-induced cytotoxicity in human liver-derived Hep G2 cells. Compounds 1, 2, and 4 also exhibited the significant hepatoprotective effect on nitrofurantoin-induced cytotoxicity in human liver-derived Hep G2 cells.

Hesperidin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Kim, Dae Keun
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.221-226
    • /
    • 2012
  • Hesperidin (HES) is a bioflavonoid with antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is well known as a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was to investigate whether HES improves IL-6-mediated impairment of insulin sensitivity in liver. Hepa-1c1c7 cells were pre-treated with 50 and $100{\mu}M$ HES in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that HES restored IL-6-suppressed expression of IRS-1 protein, downregulated IL-6-increased expression of CRP and SOCS-3 mRNA, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that HES may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Baicalin Improves the IL-6-Mediated Hepatic Insulin Resistance in Hepa-1c1c7 Cells

  • Chae, Byeong Suk;Oh, Chanho
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • Baicalin has antioxidant, anti-inflammatory and anti-diabetic properties. IL-6 is a primary proinflammatory cytokine that contributes to impaired insulin signaling in liver. This study was carried out to investigate whether baicalin improves IL-6-mediated insulin resistance in liver. Hepa-1c1c7 cells were pre-treated with 50 and 100 ${\mu}M$ baicalin in complete media for 1 h and then cultured in the presence or absence of IL-6 (20 ng/ml). These results demonstrated that baicalin restored IL-6-suppressed expression of insulin receptor substrate (IRS)-1 protein, downregulated IL-6-increased gene expression of C-reactive protein (CRP) and suppressor of cytokine signaling (SOCS)-3, and inhibited LPS-induced production of IL-6 in Hepa-1c1c7 cells. These findings indicate that baicalin may ameliorate hepatic insulin resistance via improvement of IL-6-mediated impaired insulin signaling in hepatocytes.

Polygranulomatosis in the domestic chickens (닭에서 발생한 다발성 육아종증)

  • Lee, Nam-Jin;Cho, Kyoung-Oh;Kang, Mun-Il
    • Korean Journal of Veterinary Pathology
    • /
    • v.7 no.1
    • /
    • pp.67-69
    • /
    • 2003
  • Three mature layer chickens from a farm in which chickens showed green diarrhea, cyanosis, lethargy, loss of appetite were pathologically examined. Grossly, multiple variable sized caseous nodules were detected in the liver, intestinal serosa and mesentery. In addition, parathypoid nodules in the liver and fibrous serositis on the several peritoneal organs and tissues were noticed. One of spleens had multiple infarction areas. Histologically caseous nodules consisted of central caseous core and peripheral epithelioid cells overlying the fibrous connective tissue. Multinucleated giant cells were scattered between the epithelioid cells and fibrous connective tissue. In these nodules Gram negative cocobacilus bacterial colonies were present, whereas Periodic Schiff reaction and Ziehl-Neelsen stain detected neither fungi nor acid fast bacteria. From these results multiple granulomas might be induced by Escherichia coli. In addition, severe Ascafdiodf and Salmonellosis were coinfected in these chickens.

  • PDF