• 제목/요약/키워드: lithium rechargeable battery

검색결과 131건 처리시간 0.026초

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.

국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구 (The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans)

  • 모정윤
    • 한국산학기술학회논문지
    • /
    • 제19권9호
    • /
    • pp.326-332
    • /
    • 2018
  • 현재 우리나라는 친환경 및 원전비중 축소라는 에너지 정책의 큰 변화에 직면하고 있다. 그러나 에너지 정책 변화에 따라 폭발적 증가가 예상되는 전기차 배터리 및 에너지저장시스템 등 중대형 이차전지의 폐기물 사후관리체계 및 관련 정책은 매우 미비한 상태이다. 따라서 본 연구는 국내에서 폭발적인 증가가 예상되는 중대형 리튬이온전지의 철거량을 추정해보고, 중대형 이차전지 재활용 산업의 경제성 분석을 실시하고자 한다. 이를 토대로 국내 중대형 이차전지 재활용 산업의 수익성 분석 및 관련 재활용 산업의 활성화를 위한 정책적 대안을 모색하고자 한다. 연구 분석 결과 국내 중대형 리튬이온전지 재활용 사업의 경우 B/C 비율이 1.06으로 편익이 그 비용보다 높아 사업의 경제성이 존재하는 것으로 분석되었다. 동 사업의 경제성이 높고, 현재 국내에 중대형 이차전지 재활용 관련 부분적 원천기술 및 응용기술이 확보되어 있음에도 불구하고 산업 활성화가 되지 않는 이유는 중대형 이차전지 재활용의 법제화가 이루어지지 않아 국내 수요가 낮기 때문인 것으로 분석된다. 따라서 본 연구에서는 생산자책임재활용 제도의 의무대상 품목에 리튬이차전지를 추가하여, 중대형 이차전지 재활용의 국내 수요 확대를 통한 산업 활성화 방안을 제시하였다.

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • 신용승;장현식;임재영;임세윤;이종운;이재현;;허근;김태근;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

PAN계 탄소섬유 제조조건에 따른 리튬이온 이차전지 음극의 전기화학적 특성 (Effect of Preparation Conditions of PAN-based Carbon Fibers on Electrochemical Characteristics of Rechargeable Lithium ion Battery Anode)

  • 안근완;이중기;이승원;김영대;조원일;주재백;조병원;박달근;윤경석
    • 전기화학회지
    • /
    • 제2권2호
    • /
    • pp.81-87
    • /
    • 1999
  • Polyacrylonitrile(PAN)섬유를 원료로 여러 가지 조건하에서 탄소섬유를 제조하여 리튬이온 이차전지 음극 활물질로 사용하여, 전지의 충$\cdot$방전 특성과 전기화학적 특성을 고찰하였다. 음극활물질 제조에 있어서 고려한 주요한 변수들은 탄화 열처리 온도(HTT : heat treatment temperature), 탄화시의 가스분위기와 안정화(stabilization)시 섬유 축방향으로 가해주는 장력이며, 제조된 탄소섬유의 물성 및 전기적 특성 역시 조사하였다. 본 연구에서 사용한 열처리 온도 범위는 $700^{\circ}C\~1500^{\circ}C$로서, 처리온도가 상승 할 수록 전도성은 비례하여 향상되었으나, 900"C 범위는 아직 낮은 전도성을 보였다. 또한 처리온도 증가에 따라 충 방전효율은 증가하는 반면, 충 방전용량은 감소되는 경향을 보였다. 그리고 탄화시의 가스 분위기에 따라서 제조되는 음극활물질의 전지특성에 영향을 받았다. 특히, 다른 가스 분위기 하에서 제조된 PAN계 전극들의 측정된 리튬이온의 확산계수 값은 전지의 충$\cdot$방전 특성과 일치하는 결과를 보였다. 탄화시 서로 다른 가스분위기에서 탄소섬유 표면상에 형성된 다양한 기능기그룹(surface functional group)들이 리튬이온과의 비가역적 반응이 진행되는 사실을 간접적으로 확인하게 해준다. 산화분위기에서의 안정화시의 PAN섬유에 가해지는 장력은 가교 결합 중에 형성되는 분자의 배향을 유지시켜 주는 역할을 하는데, 안정화처리 후에도 섬유의 길이변화가 없는 장력조건 (fixed-length condition)에서 충 방전효율 및 용량과 사이클 안정성이 우수한 것으로 나타났다.

Recent Development of 5 V Cathode Materials for Lithium Rechargeable Batteries

  • Kim Hyun-Soo;Periasamy Padikkasu;Moon Seong-In
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2004
  • This paper deals with the recent development of high-voltage cathode materials of mono- and di- metal ions substituted spinel $LiMn_2O_4$ for lithium batteries. $LiCu_xMn_{2-x}O_4(0{\leq}x{\leq}0.5)$ shows reversible intercalation/deintercalation in two potential regions, $3.9\~43\;and\;4.8-5.0V$ and stable electrochemical cycling behavior but with low capacity. $LiNi_{0.5}Mn_{1.5}O_4$ obtained by a sol-gel process delivers a capacity of 127mAh $g^{-1}$ on the first cycle and sustains a value of 124 mAh $g^{-1}$ even after the 60th cycle. The $Li_xCr_yMn_{2-y}O_4(0{\leq}x{\leq}0.5)$ solid-solutions exhibit enhanced specific capacity, larger average voltage, and improved cycling behaviors for low Cr content. $LiCr_yMn_{2-y}O_4$ presents a reversible Li deintercalation process at 4.9V, whose capacity is proportional to the Cr content in the range of $0.25{\leq}x{\leq}0.5$ and delivers higher capacities. $LiM_yCr_{0.5-y}Mn_{1.5}O_4(M=Fe\;or\;Al)$ shows that the capacity retention is lowered compared with lithium manganate. The cumulative capacities obtainable with Al-substitutted materials are less than those with Fe-substituted materials. $LiCr_xNi_{0.5-x}Mn_{1.5}O_4(x=0.1)$ delivers a high initial capacity of 1$152mAh\;g^{-1}$ with excellent cycleability.

배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링 (Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires)

  • 고혁주;이의주
    • 한국화재소방학회논문지
    • /
    • 제33권1호
    • /
    • pp.23-29
    • /
    • 2019
  • 리튬이온 배터리와 같은 충전식 배터리는 에너지의 저장장치로서 최근의 에너지 이용의 변화에 따라 크게 주목받고 있을 뿐 아니라 실제로 다양한 소형 전기기기 및 전기 자동차의 전기에너지 저장시스템으로 폭넓게 적용되고 있다. 하지만 리튬이온 배터리는 화재나 폭발 등의 위험성이 항상 존재하여 사용의 폭을 제한시키고 있다. 배터리화재가 일반적인 화재와의 다른 특성은 여러 가지가 있지만 그 중에 가연물질이 전해질에서 이온화 되어있다는 특성이다. 본 연구에서는 배터리 화재를 이해하기 위해서 양이온과 전자 등으로 이온화된 메탄 제트화염에서의 연소특성을 실험적으로 관찰하였다. 화염 형상 및 화염안전성은 현재의 실험조건에서는 연료 이온화 효과가 없었고, 제트화염 후류에서 측정한 CO와 NOx의 농도가 이온화연료에서 모두 감소하는 것을 확인할 수 있었다. 또한 이온화 메탄 연소특성의 파라미터 연구를 위하여 수치해석의 반응기구를 수소첨가의 형태로 단순화하여 이온화연료의 연소특성을 모사할 수 있는지에 대한 모델링 검토를 수행하였다. 연료 이온화의 영향으로 수소의 농도는 증가시키되 반응 후 온도는 일정함을 가정하여 모델링하면 실험결과와 일치하는 결과를 얻을 수 있었다.

Comparative Analysis of SOC Estimation using EECM and NST in Rechargeable LiCoO2/LiFePO4/LiNiMnCoO2 Cells

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1664-1673
    • /
    • 2016
  • Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.

리튬이차전지용 분리막 이해 및 최신 연구 동향 (Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries)

  • 김정환;이상영
    • 멤브레인
    • /
    • 제26권5호
    • /
    • pp.337-350
    • /
    • 2016
  • 향후 우리 사회의 혁신적 변화를 가져올 휴대용 전자기기, 전기자동차 및 스마트 그리드 에너지 저장장치 등의 비약적인 발전에 따라, 그 전원으로서 리튬이차전지에 대한 관심이 더욱 증대하고 있다. 본 총설에서는, 리튬이차전지 핵심 소재 중 하나인 분리막에 대해 기공 구조 및 물리화학적 물성 관점에서 고찰하고, 이와 함께 최신 연구 동향을 소개하고자 한다. 리튬이차전지 분리막은 양극과 음극 사이에 위치하는 다공성 막으로서, 두 전극 간의 전기적 단락을 방지하고, 이온의 흐름을 가능하게 하는 기능을 갖는다. 분리막 자체는 전지 내 전기화학 반응에는 직접적으로 참여하지 않으나, 앞서 언급한 기능들에 의해 전지 성능 및 안전성에 큰 영향을 끼친다. 최근 들어, 이러한 분리막의 기본 특성 이외에, 전지 안전성 강화 및 금속 이온 흡착 등을 비롯한 다양한 기능 부여를 위한 노력들이 활발히 진행되고 있다. 본 총설에서는 현재 상업화된 폴리올레핀 분리막에 대한 이해를 토대로, 개질 폴리올레핀 분리막, 부직포 분리막, 세라믹 복합 분리막 및 화학 활성 분리막 등으로 대표되는 최신 분리막 기술들을, 차세대 전지 개발 방향과 관련 지어 기술하고자 한다.

A Novel Separator Membrane for Safer Lithium-ion Rechargeable Batteries

  • Lee, Sang-Young;Kim, Seok-Koo;Hong, Jang-Hyuck;Shin, Byeong-Jin;Park, Jong-Hyuck;Sohn, Joon-Yong;Jang, Hyun-Min;Ahn, Soon-Ho
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.69-70
    • /
    • 2006
  • In lithium-ion batteries, separator membrane's, main role is to physically isolate a cathode and an anode while maintaining rapid transport of ionic charge carriers during the passage of electric current. As far as battery safety is concerned, the electrical isolation of electrodes is most crucial since unexpected short-circuits across the membrane induces hot spots where thermal runaway may break out. Internal short-circuits are generally believed to occur by protrusions on the electrode surface either by unavoidable deposits of metallic impurities or by dendritic lithium growth during battery operation. Another cause is shrinkage of the separator membrane when exposed to heat. If separator membrane can be engineered to prevent the internal short-circuit, it will not be difficult to improve lithium-ion batteries' safety. Commonly the separators employed in lithium-ion batteries are made of polyethylene (PE) and/or polypropylene (PP). These materials have terrible limitations in preventing the fore-mentioned internal short-circuit between electrodes due to their poor dimensional stability and mechanical strength. In this study we have developed a novel separator membrane that possesses very high thermal and mechanical stability. The cells employing this separator provided noticeable safety improvement in the various abuse tests.

  • PDF

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.