• Title/Summary/Keyword: lithium battery cathode

Search Result 369, Processing Time 0.026 seconds

Charge/Discharge Characteristics of Lithium ion Secondary Battery Using Ag-deposited Graphite as Anode Active Material (은 담지한 흑연을 부극 활물질로 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.727-732
    • /
    • 1998
  • Ag-deposited graphite powder was prepared by a chemical reduction method of metal particles onto graphite powder. X-ray diffraction observation of Ag-deposited graphite powder revealed that silver existed in a metallic state, but not in an oxidized one. From SEM measurement, ultrafine silver particles were highly dispersed on the surface of graphite particles. Cylindrical lithium ion secondary battery was manufactured using Ag-deposited graphite anodes and $LiCoO_2$ cathodes. The cycleability of lithium ion secondary battery using Ag-deposited graphite anodes was superior to that of original graphite powder. The improved cycleability may be due to both the reduction of electric resistance between electrodes and the highly durable Ag-graphite anode.

  • PDF

Intercalation Voltage and Lithium Ion Conduction in Lithium Cobalt Oxide Cathode for Lithium Ion Battery (리튬 이온 전지용 리튬 코발트 산화물 양극에서의 삽입 전압과 리튬 이온 전도)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.290-294
    • /
    • 2010
  • We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation of lithium ions; the intercalation of a lithium ion at a time in the individual layer and the intercalation of lithium ions in all the sites of one layer after all the sites of another layer. The average intercalation voltage was the same value, 3.48 V. However, we found the former method was more favorable than the latter method. The lattice parameter c was increased as the increase of the lithium concentration in the range of x < 0.25 while it was decreased as increase of the lithium concentration in the range of x > 0.25. The energy barrier for the conduction of lithium ion in lithium cobalt oxide was increased as the lithium concentration was increased. We demonstrated that the decrease of the intercalation voltage and increase of the energy barrier as the increase of the lithium concentration caused lower output voltage during the discharge of the lithium ion battery.

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil;An, JiEun;Park, Seul-A;Song, HyeYeong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • $^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

The characteristics of polymer electrolyte for lithium polymer battery

  • Park Soo-Gil;Park Jong-Eun;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • A lithium ion battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key factor of the secondary battery system, that has been obtained during the process of the development of a polymer type lithium battery. As a successful result of the solid polymer electrolyte. The ionic conductivity of the solid polymer electrolyte, which is composed of polyacrylonitrile and $LiClO_4\;with\; Al_2O_3$ dissolved as the supporting electrolyte, has been confirmed to be $2.3\times10^{-4} S/cm$ at room temperature.

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.

Charge-discharge behaviour of lithium ion secondary battery using graphitized mesophase pitch-based carbon fiber anodes (흑연화 MPCF 부극을 이용한 Li ion 2차전지의 충방전 특성)

  • Kim Sang-Pil;Park Jeong-Hu;Cho Jeong-Soo;Yun Mun-Soo;Kim Kyu-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.14-17
    • /
    • 1998
  • Mesophase pitch-based carbon fibers(MPCF) have been investigated as an anode active material for lithium ion secondary battery. Graphitized MPCF gives high discharge capacity and good Ah efficiency. MPCF/Li cell shows an initial discharge capacity of 300 mAh/g and Ah efficiency above $90\%$ at a current density of 25 mA/g at $0\~1$ V. Cylindrical lithium ion secondary battery was fabricated using mixed carbon anode and $LiCoO_2$, cathode. In order to improve the cyclability of lithiun ion secondary battery, other carbons were added to the MPCF up to $10wt\%$. The cycle performance of lithium ion secondary battery using mixed carbons was superior to those using graphitized MPCF.

Electric and Electrochemical Characteristic of PMMA-PEO Gel Electrolyte for Rechargeable Lithium Battery

  • 박수길;박종은;이홍기;이주성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.768-772
    • /
    • 1998
  • The new type polymer electrolyte composed of polymethyl methacrylate(PMMA) - polyethy leneoxide(PEO) contain $LiClO_4$ -EC/PC was developed for the weightless and long or life time of lithium polymer batery system with using polyaniline electrode. the gel type electrolytes were prepared by PMMA with PEO at different lithium salts in the glove box. The minimum thickness of PMMA-PEO gel electrolyte for the slim type is about(400~450$\mu\textrm{m}$. These gel electrolyte showed good compatibility with lithium electrode. The test cell Li/polymer electrolyte/polyaniline solid state cell which was prepared by different lithium salt was researched by electrochemical technique.

  • PDF

Development of High Performance Battery for Navigation Aid's Power (항로표지(등부표) 전원공급용 고성능 축전지 개발)

  • Yoon, Seok-Jun;Cho, Myung-Hun;Lee, Dae-Pyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.435-438
    • /
    • 2009
  • A navigation aid buoy is a kind of safety facility for maritime navigation with a purpose of leading the vessels for navigating, docking and sail off. An advanced rechargeable battery is required for stable power supply for navigation aid buoy as the high magnitude LED lamps, real time location/control for navigation aids and e-Navigation support systems with maritime climate observation equipments have recently been deployed. This study is focused on the lithium battery, especially lithium polymer battery which is believed to be safer than the other types of batteries. The lithium polymer battery reviewed in this study is designed with $LiFePO_4$-based cathode, which has superior safety features to the oxide-based cathodes. Besides, a 3.6kWh battery pack has been built with the above-mentioned unit cells for the purpose of comparative research with lead acid battery system.

  • PDF