• Title/Summary/Keyword: lithium battery cathode

Search Result 371, Processing Time 0.039 seconds

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

Electrochemical Properties of $LiFePO_4-LiCoO_2$ Cathode Materials in Lithium Secondary Batteries (리튬이차전지 정극활물질용 $LiFePO_4-LiCoO_2$의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.241-242
    • /
    • 2006
  • In this work, the $LiFePO_4-LiCoO_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in different current density. The cell of $LiFePO_4-LiCoO_2$ observed two voltage plateau regions at 3.4 and 3.9V. The cell of $LiFePO_4-LiCoO_2$ (90:10 wt%) mixed cathode delivered a discharge capacity of ca. 139.8 mAh/g at a 0.2C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca 85.7mAh/g was obtained at a 2C rate.

  • PDF

Effect of Preparation Parameters of Sulfur Cathodes on Electrochemical Properties of Lithium Sulfur Battery

  • Zhao, Xiaohui;Kim, Dul-Sun;Ahn, Hyo-Jun;Kim, Ki-Won;Jin, Chang-Soo;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • Sulfur cathodes were prepared by ball milling method with different types of electronic conductors and binders in different ball milling time. The sulfur cell with a cathode prepared in 45 min ball milling time gave an initial discharge capacity of 794mAh/g with Super-P as an electronic conductor and poly(vinylidene fluoride) as a binder. The cathode with multi-walled carbon nanotube as an electronic conductor showed an initial discharge capacity of 944 mAh/g and a discharge capacity of 300 mAh/g after 20 cycles. Cathodes with poly(ethylene oxide) and poly(vinylidene fluoride) as binders showed different cycle performance.

The Charge/discharge Properties of $ Li_xNi_{2-x}O_2$Cathode for Lithium Rechargeable Battery (리튬 2차전지용$ Li_xNi_{2-x}O_2$ 정극의 충방전 특성)

  • 김철중;전대규;이하니;박영철;김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.378-381
    • /
    • 1996
  • This study is to research Li$_{x}$Ni$_{2-x}$O$_2$ cathode for lithium chargeable battery. We investigated morphology and cell resistance, capacity and Ah efficiency of Li$_{x}$Ni$_{2-x}$O$_2$/Li cells using Li$_{x}$Ni$_{2-x}$O$_2$ prepared under air and $O_2$ flow. The (003)I/(104)I intensity ratio was 1.4. The cell resistance was increased with increasing Li in Li$_{x}$Ni$_{2-x}$O$_2$. The discharge capacity based on Li$_{x}$Ni$_{2-x}$O$_2$of 1st and 15th cycles was 135㎃h/g and 108㎃h/g, respectively. The Li$_{x}$Ni$_{2-x}$O$_2$ prepared with hexan under $O_2$ flow had a good properties. properties. properties.

  • PDF