Browse > Article
http://dx.doi.org/10.7844/kirr.2012.21.5.79

Technology Trends of Cathode Active Materials for Lithium Ion Battery  

Hwang, Young-Gil (Korea Institute of Science and Technology Information)
Kil, Sang-Cheol (Korea Institute of Science and Technology Information)
Kim, Jong-Heon (Korea Institute of Science and Technology Information)
Publication Information
Resources Recycling / v.21, no.5, 2012 , pp. 79-87 More about this Journal
Abstract
With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.
Keywords
lithium ion cell; cathode materials; energy density; molecular cluster; graphene-sulfur composit;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Nakano, K. Dokko, S. Koizumi, H. Tannai and k. Kanamura, 2008: J. Electrochemi. Soc., !55, A9-09-A914
2 A. V. Murugan, T. Muraliganth and A. Manthiram., 2009 : Electrochemi. Soc., 155, A909-A914
3 Tishiro Hirai, 2009: Chemical Eng., 6, pp.440-444
4 Hirofumi YOSHIKAWA and Kunnio AWAGA, 2011 : Surface Tec. 62(10), pp.486-490
5 N. Kawasaki H. Wang, R. Nakanishi, S. Hamanjaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, K. Awaga, 2011: Angew Chem. Ind.Ed, 50, pp.3471   DOI
6 http//www. greencarcongress.com/2011/07/g-s-20110702html, Graphene-Sulfur composite as stable high energy capacity cathodes for Li-ion batteries
7 Masahiko HAYASHI, 2010 : Ceramics, 45(3), pp.167 -171
8 M. Tabuchi, T. Takeuchi, K. Tasumi, 2009: Chemical Eng., 6, pp. 429-434
9 Tomonari Takeuchi, et al, 2011: J. Industrial materials, 59(8), pp. 76-79
10 Mineo SATO, 2010: Ceramics, 45(3), pp. 158-162
11 S. OKATA, T. DOI and J. YAMAKI, 2010: Ceramics, 45(3), pp.153-157
12 S. Yang, P. Y. Zavalij and M. S. Whittingham, 2001: Electrochemi. Commun, 3, pp. 505-508   DOI
13 S. Yang, Y. Song, P. Y. Zavalij and M. S. Whittingham, 2002: Electrochemi. Commun., 4, pp. 239-244
14 S. Tajimi, Y. Ikeda, K. Uematsu, K. Toda, and M. Sato, 2004: Solid State Ionics, 175, pp. 287-290   DOI
15 G. Meligrana, C, Gerbaldi, A.Tuel, S. Bodoardo and N. Penazzi, 2006: J. Power Sources , 160, pp. 516-522   DOI
16 N. Nakamura and H. Noguchi, 2009: Chemical eng. 6,pp.409-413
17 R. Kanno, 2010: Industrial materials, 58(12), pp.18-20
18 M. Tabuchi, et5 al, 2002: J. Electrochemi. Soc. 149(5), A509-A524   DOI