• Title/Summary/Keyword: liquid storage tank

Search Result 210, Processing Time 0.029 seconds

A Study on the Probability of BLEVE of Above-ground LP Gas Storage Tanks Exposed to External Fire (지상식 LPG 저장탱크의 외부화재에 의한 BLEVE 가능성 해석)

  • Lee Seung-Lim;Lee Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.19-23
    • /
    • 2003
  • The purpose of this thesis is to investigate the BLEVE probability of LP gas storage tanks which are relatively more dangerous, by the deductive calculating method using the results of Birk's pilot tank test and the required heat capacity of BLEVE. The result that BLEVEs can occur in only above 43.68 percent of liquid filling level under $600^{\circ}C$ of tank pate temperature and $53^{\circ}C$ of inner liquid temperature, was obtained and will be useful for preventing the BLEVE of LP gas storage tanks in fire sites. In addition, this research showed conditions of external leak and fire causing BLEVE, based on 15ton capacity of LP gas tank which has the same specifications as those in Puchon LP gas filling station accident. The result of the calculation is that the minimum pool fire conditions of BLEVE are above 7.2mm equivalent diameter under a liquid release condition and above 17.6mm equivalent diameter under a two-phase release condition. In the end, the result of calculating the pool size corresponding the above conditions using EFFECTS version 2.1, concludes that a minimum of 3.3 meters of diameter and 10.4 meters of height should be needed for BLEVE outbreak.

  • PDF

A Study on the Design Criteria of Seismic and Wind Loads for Cylindrical Liquid Storage Steel Tanks (액체저장탱크의 지진하중과 풍하중 설계기준 고찰)

  • Lee N.H.;Oh T.Y.;An Z.O.;Choi S.Y.;Park J.Y.;Kim H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1412-1415
    • /
    • 2005
  • Special considerations on the design of liquid storage tanks should be taken into account for seismic and wind loads. But Korean industrial standard KS B 6225 does not specify detailed guidelines for a design. It is therefore necessary to improve design guidelines for a seismic and wind-proof design in KS B 6225. The purpose of this study is provide a basis for the development of improved seismic and wind-proof design procedures, especially about seismic and wind loads.

  • PDF

Baffled fuel-storage container: parametric study on transient dynamic characteristics

  • Lee, Sang-Young;Cho, Jin-Rae;Park, Tae-Hak;Lee, Woo-Yong
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.653-670
    • /
    • 2002
  • In order to ensure the structural dynamic stability of moving liquid-storage containers, the flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as the disc-type elastic baffle. In practice, the design of a suitable baffle requires a priori the parametric dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE (arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

The Rocking Response of Rectangular Fluid Storage Tank (구형 유체 저장 Tank의 Rocking응답)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.107-114
    • /
    • 1997
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of rocking motion on the seismic response of the 3-D flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation of 3-D rectangular tanks subjected to the translational and rocking motions is obtained by Rayleigh-Ritz method. The dynamic stiffness matrix of the rigid surface foundation resting on the surface of a stratum are calculated by hyperelement method. The seismic responses of a 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation of the structural motion with the dynamic stiffness matrix of the rigid surface foundation.

  • PDF

Analysis for DME FPSO Storage Tank and Experimental Study on the DME Evaporation Rate by Rolling Motion of Ship (DME FPSO선박의 탱크해석 및 Rolling 유동에 따른 증발 실험연구)

  • Yun, Sangkook;Cho, Wonjun;Baek, Youngsoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1010-1015
    • /
    • 2012
  • DME(Dimethyl ether) is the one of the massive energy sources synthesized from natural gas. KOGAS has already developed the commercial-scale production plant of DME and has been doing to obtain overseas resources to meet the domestic needs. This paper presents the DME storage tank design criteria by stress and strain analysis, and the experimental study on the evaporation phenomena of DME by thermal intake and physical rolling movement of DME FPSO or cargo vessel, because the various moving motions along with heat intake cause the evaporation of low temperature liquid. The experimental result shows that the evaporation rate was increased with larger rolling degree and higher liquid level. The rolling motion leads to evaporate about 20% increase with 15 degree rolling based on the evaporation quantity without rolling.

Seismic Analysis of Liquid Storage Tanks Considering Shell Flexibility (벽면의 유연성을 고려한 액체저장탱크의 동적해석)

  • Lee, Chang Geun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.21-29
    • /
    • 1987
  • In this paper the liquid sloshing effects in vertical storage tanks under earthquake loadings are studied. The study focuses on the investigation of the effect of the flexibility of the tank wall on the hydrodynamic forces exerted on it. The tank structure is modelled using finite elements. The motion of the liquid is expressed by the Laplace equation. The equation of motion of the fluid shell system is formulated including the coupling effect between the shell motion and the sloshing motion. A procedure is developed to obtain the natural frequencies and the mode shapes of the sloshing motion as well as the shell vibration. Dynamic analyses have been carried out for several tanks with different dynamic characteristics utilizing the time history method as well as the response spectra method.

  • PDF

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

Performance of a 5 L Liquid Hydrogen Storage Vessel (5 L급 액체수소 저장용기의 성능특성 연구)

  • KARNG, SARNG WOO;GARCEAU, NATHANIEL;LIM, CHANG MU;BAIK, JONG HOON;KIM, SEO YOUNG;OH, IN-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.234-240
    • /
    • 2015
  • In the face of the world's growing energy storage needs, liquid hydrogen offers a high energy density solution for the storage and transport of energy throughout society. A 5 L liquid hydrogen storage tank has been designed, fabricated and tested to investigate boil-off rate of liquid hydrogen. As the insulation plays a key role on the cryogenic vessels, various insulation methods have been employed. To reduce heat conduction loss, the epoxy resin-based insulation supports G-10 were used. To minimize radiation heat loss, vapor cooled radiation shield, multi-layer insulation, and high vacuum were adopted. Mass flow meter was used to measure boil-off rate of the 5 L cryogenic vessel. A series of performance tests were done for liquid nitrogen and liquid hydrogen to compare with design parameters, resulting in the boil-off rate of 1.7%/day for liquid nitrogen and 16.8%/day for liquid hydrogen at maximum.

A Comparative Study on the Earthquake Resistant Design Criteria for Cylindrical, Liquid-Storage Tanks (원통형 액체저장탱크 내진설계기준의 비교연구)

  • 국승규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.69-75
    • /
    • 1998
  • Because the collapse of liquid-storage tank structures under earthquakes brings out substantially more damages by indirect effects(continuous losses of economy and environmental disruption due to the spillage of toxic contents or pollutants) than direct economic losses of tanks and contents, it is an urgent matter to provide earthquake resistant design criteria in order to minimize such direct/indirect damages. In this paper, as fundamental works to prepare earthquake resistant design criteria for cylindrical liquid-storage tanks, analysis methods given in the Recommendations of New Zealand and Austria are reviewed and the applicabilities and problems of the two methods are set forth by comparison of the analysis results with a numerical example.

  • PDF

Numerical assessment of seismic safety of liquid storage tanks and performance of base isolation system

  • Goudarzi, Mohammad Ali;Alimohammadi, Saeed
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.759-772
    • /
    • 2010
  • Seismic isolation is a well-known method to mitigate the earthquake effects on structures by increasing their fundamental natural periods at the expense of larger displacements in the structural system. In this paper, the seismic response of isolated and fixed base vertical, cylindrical, liquid storage tanks is investigated using a Finite Element Model (FEM), taking into account fluid-structure interaction effects. Three vertical, cylindrical tanks with different ratios of height to radius (H/R = 2.6, 1.0 and 0.3) are numerically analyzed and the results of response-history analysis, including base shear, overturning moment and free surface displacement are reported for isolated and non-isolated tanks. Isolated tanks equipped by lead rubber bearings isolators and the bearing are modeled by using a non-linear spring in FEM model. It is observed that the seismic isolation of liquid storage tanks is quite effective and the response of isolated tanks is significantly influenced by the system parameters such as their fundamental frequencies and the aspect ratio of the tanks. However, the base isolation does not significantly affect the surface wave height and even it can causes adverse effects on the free surface sloshing motion.