• Title/Summary/Keyword: liquid oxygen

Search Result 671, Processing Time 0.022 seconds

Liquid Oxygen in Feeding Line during Propellant Filling and Holding (산화제 충진 및 대기 과정의 추진제 공급배관 내부 현상)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Lee, Joong-Youp
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.34-37
    • /
    • 2007
  • Propellant filling and holding test was carried out using liquid oxygen as a working fluid. The feeding line system has a filter at propellant tank outlet. Vaporization of liquid oxygen during holding after completion of filling and effect of vaporization to recirculation performance in this system was observed. Filling rate and pressure of tank ullage had the effect on state of liquid oxygen in feeding line. There was no geysering in feeding line during holding because of the position of filter.

  • PDF

Liquid Oxygen Test of Oxidizer Pump of a Liquid Rocket Engine (액체로켓엔진용 산화제펌프에 대한 액체산소 성능시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.805-811
    • /
    • 2009
  • An oxidizer pump of a turbopump for a 30-ton class gas generator cycle engine was tested in the medium of liquid oxygen. The turbine was driven by cold hydrogen gas in the test. The oxidizer pump was operated stably at both design and off-design conditions, satisfying the performance requirements. The pump head coefficient from the liquid oxygen test was 2~3% lower than that from the water test. The power required to run the oxidizer pump was well balanced with the power produced by the turbine.

Estimation of heat release rate of liquid fuels by Oxygen consumption technique (산소 소모법에 의한 액체 연료의 열발생율 평가)

  • 한용식;김명배;최준석
    • Fire Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 1998
  • The heat release rate of liquid fuels is estimated by oxygen consumption technique. This method is based on the generalization that the heat release rate of combustion per unit of oxygen consumed are approximately the same for most fuels commonly encountered in fires. The oxygen concentration is measured by analyzer of paramagnetic type. The concentrations of CO2 and CO gas are measured by analyzed of Infra-Rad type. Time delays of analyzers are ignored. Results acqired from measuring techniques of exhaust gas concentrations are compared with each other.

  • PDF

RETF 액체산소 공급설비 및 엔진 수류시험

  • Han, Yeoung-Min;Cho, Nam-Kyung;Kim, Seung-Han;Chung, Yong-Ghap;Park, Sung-Jin;Lee, Kwang-Jin;Kim, Young-Han;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-131
    • /
    • 2002
  • In this paper, characteristics of cryogenic liquid oxygen was examined during cold flow of KSR-III main engine at each stage. The effect of venting was examined at the stage of cooling and at the pressurization stage, the interaction between nitrogen gas and liquid oxygen was also examined. The characteristic of liquid oxygen in the engine manifold was analyzed. The results showed that venting was the primary role at the cooling process and the interaction of nitrogen gas and liquid oxygen in the run tank is limited at the surface area. With the sampling rate of 1KHz static and dynamic pressure were measured in the rocket engine manifold and in the LOX supply equipment. 32.5mm and 38mm orifice were installed for the tests and pressure condition of liquid oxygen was 23Bar, 29Bar, 41Bar. Increase of orifice diameter and decrease of supply pressure reduced the perturbation of pressure in engine manifold.

  • PDF

Subcooling of cryogenic liquid by diffusion-driven evaporation (확산동기 증발에 의한 극저온 액체 과냉각)

  • Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.72-82
    • /
    • 2007
  • This paper relates to reducing the temperature of a cryogenic liquid by contacting it with gas bubbles, which can be characterized by diffusion-driven evaporative cooling, The characteristic of diffusion-driven evaporative cooling is thoroughly examined by theoretical. analytical and experimental methods specifically for the case of helium injection into liquid oxygen. The results reveal that if the gaseous oxygen partial pressure in helium bubbles is lower than the liquid oxygen vapor pressure, cooling occurs autonomously due to diffusion mass transfer. The method of lowering the injected helium temperature turns out to be very effective for cooling purpose.

Study on Leakage Measurements of Oxygen and Helium Using Standard Gas Flow Rates in a Orifice Flow (오리피스에서 기체의 표준유량을 이용한 산소와 헬륨의 누설량 측정에 관한 연구)

  • Lee, Joongyoup;Han, Sangyeop;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1108-1115
    • /
    • 2015
  • In this study, correlation equations were arranged about mass flow rates of oxygen and volume flow rates of helium using a mouthpiece method. The mouthpiece method can reduce examination cost by using similar empirical formula. Instead of liquid oxygen, in the mouthpiece method, gas helium can be measured in order to determine the leakage amount of liquid oxygen conveniently. Experiment was conducted and compared to understand leakage amount relation between the helium and the oxygen for prototype item under a room and a cryogenic temperature conditions. The leakage volume flow rate [$A.m{\ell}/s$] of the helium was 174 times higher than mass flow rate [g/s] of the oxygen leakage at liquid state. The derived correlation equations were verified using data from the National Institute of Standards and Technology (NIST).

Precipitation of Manganese in the p-Xylene Oxidation with Oxygen-Enriched Gas in Liquid Phase

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The liquid phase oxidation of p-xylene has been carried out with oxygen-enriched gas, and the manganese component was precipitated probably via over-oxidation to $Mn^{4+}$. The precipitation increased with rising oxygen concentration in the reaction gas and occurred mainly in the later part of the oxidation. The activity of the reaction decreased, and the blackening of the product and side reactions to carbon dioxide increased with the degree of precipitation. Precipitation can be decreased with the addition of metal ions, such as cerium, chromium and iron.

Estimation of surface tension of liquid alloys under different oxygen partial pressure

  • Min, Sun-Gi;Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.101-101
    • /
    • 2008
  • The effect of oxygen partial pressure on the surface tension data of liquid alloys was investigated by means of comparing the calculated data and the measured one. Two binary alloy systems were chosen to observe the dependence of oxygen adsorption behavior on different oxygen partial pressures. It was found that the difference between the computed values and the experimental of the surface tension was within the range of maximum 10%.

  • PDF

A Study on the Minimum Ignition Energy Measurements for Liquid Jet A1 Fuel under at Elevated Oxygen Concentrations and Reduced Atmospheric Pressures (고산소-저기압 환경에서 JET A1 액체연료의 최소점화에너지 측정에 관한 연구)

  • Kwon, Haeng-Jun;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.88-93
    • /
    • 2017
  • In the present study, the ignition characteristics of liquid fuel were experimentally investigated. To quantify its ignitability as ignition characteristics, the minimum ignition energy (MIE) of liquid fuel was defined and measured under at the elevated oxygen concentrations and reduced atmospheric pressures which that are the most probable conditions likely to be encountered during operation of the space launch vehicle's operating process. The experimental results demonstrate that the measured MIE decreased with the increasing the oxygen concentration at given atmospheric pressures. When the atmospheric pressure was reduced from 1 atm to 0.2 atm at a fixed oxygen concentration, the measured MIE was found to vary with $P^{-2}$ but the lowest MIE was observed at 0.8 atm.