• Title/Summary/Keyword: liquid hydrogen

Search Result 592, Processing Time 0.027 seconds

Design and performance evaluation of ortho-para H2 conversion equipment (Ortho-para 수소변화장치의 설계 및 성능평가)

  • Baik, J.H.;Kang, B.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.93-100
    • /
    • 1998
  • The ortho-para $H_2$ catalytic conversion equipment has been developed to reduce the evaporation loss from stored liquid hydrogen. The ortho-para $H_2$ conversion heat is evaluated at liquid nitrogen temperature. This problem is of particular interest in the design of the ortho-para $H_2$ converter in a hydrogen liquefaction system. The ortho-para $H_2$ conversion equipment consists of a catalytic converter, a precooler, and a liquid nitrogen bath. 30-90 cc of $Fe(OH)_3$ are employed as a catalyst in the present converter. The conversion heat and conversion effectiveness are evaluated when mass flow rate of hydrogen is in the range of 0.05-l.6 g/min. It is found that the ortho-para conversion heat is increased while conversion effectiveness is decreased as the mass flow rate of hydrogen is increased. Both the ortho-para conversion heat and conversion effectiveness are increased with an increase in the amount of the catalyst.

  • PDF

Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures (초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave (액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구)

  • SEUNG JUN OH;JUN YEONG KWON;JEONG HWAN YOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

Fabrication of Prototype vuv Spectrometer & Liquid Target System Containing Hydrogen

  • Lee, Yun-Man;Kim, Jae-Hun;Kim, Jin-Gon;An, Byeong-Nam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.586-586
    • /
    • 2012
  • The vuv spectrometer for ITER main plasma measurement is designed as a five-channel spectral system. To develop and verify the design, a two-channel prototype system was fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. For test of the prototype system, a hollow cathode lamp is used as a light source. The system is composed of a collimating mirror to collect the light from source to slit, and two holographic diffraction gratings with toroidal geometry to diffract and also to collimate the light from the common slit to detectors. The overall system performance was verified by comparing the measured spectral resolutions with the calculated spectral resolutions. And we also have developed liquid jet target system. This study is about a neutron generator, which is designed to overcome many of the limitations of traditional beam-target neutron generators by utilizing a liquid target. One of the most critical aspects of the beam-target neutron generator is the target integrity under the beam exposure. A liquid target can be a good solution to overcome damage to the target such as target erosion and depletion of hydrogen isotopes in the active layer, especially for the ones operating at high neutron fluxes and maintained relatively thin with no need for water cooling. In this study, liquid target containing hydrogen has been developed and tested.

  • PDF

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.

Preparation and Properties of Self-Assembled Discotic Liquid Crystals Formed by Hydrogen Bonding (수소결합에 의한 자기조립된 원반형 액정의 제조와 특성)

  • Lee, Jun Hyup
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.161-168
    • /
    • 2014
  • New self-assembled discotic liquid crystals have been prepared through single hydrogen bonding between phenol and pyridine moieties, and their liquid crystalline properties were investigated. For the construction of discotic structure, we used phloroglucinol as a core molecule and trans-4-alkoxy-4'-stilbazoles with systematically varied alkyl chain lengths as peripheral units. FTIR results showed that the intermolecular hydrogen bonds between core and peripheral molecules are successfully formed, and the stability of the hydrogen bond is strongly influenced by molecular ordering. Discotic complexes exhibited different liquid crystalline phases depending on the length of alkyl chains around the discotic mesogen. The discotic complexes with longer alkyl chains showed hexagonal columnar mesophases, while the other complexes formed nematic columnar mesophases. These results indicated that the type of mesophase structure was strongly dependent on the alkyl chain length around the aromatic core.

Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks (대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석)

  • KIM, KYEONGHO;SHIN, DONGHWAN;KIM, YONGCHAN;KARNG, SARNG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature (액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구)

  • Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

The Study on the Formation Mechanism of Gas Pore During Lost Foam Casting of Al alloys (알루미늄 합금의 소실모형주조 중 기포 형성 기구에 관한 연구)

  • Shin, Seung-Ryoul;Han, Sang-Won;Lee, Kyong-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.268-275
    • /
    • 2003
  • The mechanism of the hydrogen gas pore formation was investigated in Lost Foam Casting of Al-alloy by reduced pressure test and real casting. The hydrogen gas pick-up was affected by the formed gas during the decomposition of polystyrene in addition to the liquid product. It depended on pouring temperature and a proper temperature of metal front gave the minimum hydrogen pick-up. At a low pouring temperature, the hydrogen went into the melt mainly from entrapped liquid product of polystyrene but pores were formed from the gas as well as the liquid product at a high pouring temperature. The mold flask evacuation down to 710torr decreased the gas porosity down by around 0.4% vol%. The entrapped decomposition product of polystyrene in the melt was observed through the visualization of filling behavior of Al alloy-melt with the high speed camera.

Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator (GM냉동기를 이용한 수소액화 시스템의 액화량 예측)

  • 박대종;장호명;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF