Browse > Article
http://dx.doi.org/10.17702/jai.2014.15.4.161

Preparation and Properties of Self-Assembled Discotic Liquid Crystals Formed by Hydrogen Bonding  

Lee, Jun Hyup (Department of Chemical Engineering, Myongji University)
Publication Information
Journal of Adhesion and Interface / v.15, no.4, 2014 , pp. 161-168 More about this Journal
Abstract
New self-assembled discotic liquid crystals have been prepared through single hydrogen bonding between phenol and pyridine moieties, and their liquid crystalline properties were investigated. For the construction of discotic structure, we used phloroglucinol as a core molecule and trans-4-alkoxy-4'-stilbazoles with systematically varied alkyl chain lengths as peripheral units. FTIR results showed that the intermolecular hydrogen bonds between core and peripheral molecules are successfully formed, and the stability of the hydrogen bond is strongly influenced by molecular ordering. Discotic complexes exhibited different liquid crystalline phases depending on the length of alkyl chains around the discotic mesogen. The discotic complexes with longer alkyl chains showed hexagonal columnar mesophases, while the other complexes formed nematic columnar mesophases. These results indicated that the type of mesophase structure was strongly dependent on the alkyl chain length around the aromatic core.
Keywords
Discotic liquid crystal; self-assembly; single hydrogen bonding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, Pramana, 9, 471 (1977).   DOI   ScienceOn
2 N. Boden, R. J. Bushby, J. Clements, M. V. Jesudason, P. F. Knowles, and G. Williams, Chem. Phys. Lett., 152, 94 (1988).   DOI   ScienceOn
3 D. Adam, P. Schuhmacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, Nature, 371, 141 (1994).   DOI
4 L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, and J. D. MacKenzie, Science, 293, 1119 (2001).   DOI
5 A. M. Levelut, J. Chim. Phys., 80, 149 (1983).   DOI
6 A. N. Cammidge and R. J. Bushby, in Handbook of Liquid Crystals, D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, and V. Vill Ed., 2B, p 693, Wiley-VCH, New York (1998).
7 R. Kleppinger, C. P. Lillya, and C Yang, J. Am. Chem. Soc., 119, 4097 (1997).   DOI   ScienceOn
8 M. Suarez, J. M. Lehn, S. C. Zimmerman, A. Skoulios, and B. Heinrich, J. Am. Chem. Soc., 120, 9526 (1998).   DOI
9 K. Kanie, M. Nishii, T. Yasuda, T. Taki, S. Ujiie, and T. Kato, J. Mater. Chem., 11, 2875 (2001).   DOI
10 S. Jin, Y. Ma, S. C. Zimmerman, and S. Z. D. Cheng, Chem. Mater., 16, 2975 (2004).   DOI
11 Y. Kamikawa, M. Nishii, and T. Kato, Chem.-Eur. J., 10, 5942 (2004).   DOI
12 D. Goldmann, R. Dietel, D. Janietz, C. Schmidt, and J. H. Wendorff, Liq. Cryst., 24, 407 (1998).   DOI
13 A. Kraft, A. Reichert, and R. Kleppinger, Chem. Commun., 1015 (2000).
14 H. K. Lee, H. Lee, Y. H. Ko, Y. J. Chang, N. K. Oh, W. C. Zin, and K. Kim, Angew. Chem. Int. Ed., 40, 2669 (2001).   DOI
15 K. Willis, D. J. Price, H. Adams, G. Ungar, and D. W. Bruce, J. Mater. Chem., 5, 2195 (1995).   DOI
16 A. Sato, T. Kato, and T. Uryu, J. Polym. Sci. Part A: Polym. Chem., 34, 503 (1996).   DOI
17 D. J. Price, K. Willis, T. Richardson, G. Ungar, and D. W. Bruce, J. Mater. Chem., 7, 883 (1997).   DOI   ScienceOn
18 Y. Matsunaga, N. Miyajima, Y. Nakayasu, and S. Sakai, Bull. Chem. Soc. Jpn., 61, 207 (1988).   DOI
19 U. Kumar, T. Kato, and J. M. J. Frechet, J. Am. Chem. Soc., 114, 6630 (1992).   DOI
20 T. Kato and J. M. J. Frechet, Macromol. Symp., 98, 311 (1995).
21 D. W. Bruce, D. A. Dunmur, E. Lalinde, P. M. Maitlis, and P. Styring, Liq. Cryst., 3, 385 (1988).   DOI
22 T. Kato, J. M. J. Frechet, P. G. Wilson, T. Saito, T. Uryu, A. Fujishima, C. Jin, and F. Kaneuchi, Chem. Mater., 5, 1094 (1993).   DOI
23 P. H. J. Kouwer, W. F. Jager, W. J. Mijs, and S. J. Picken, Macromolecules, 33, 4336 (2000).   DOI
24 H. Ringsdorf, R. Wustefeld, E. Zerta, M. Ebert, and J. H. Wendorff, Angew. Chem. Int. Ed., 28, 914 (1989).   DOI