• Title/Summary/Keyword: liquid chromatography-mass spectrometry (LC-MS)

검색결과 456건 처리시간 0.025초

Analysis of Photodegradation Products of Organic Photochromes by LC/MS

  • Lim, Young-Hee;Youn, Yeu Young;Kim, Kyung Hoon;Cho, Hye-Sung
    • Mass Spectrometry Letters
    • /
    • 제3권4호
    • /
    • pp.101-103
    • /
    • 2012
  • The ultraviolet (UV) degradation products of photochromic naphthoxazine and naphthopyran derivatives in acetonitrile were separated and identified using liquid chromatography-mass spectrometry (LC-MS). Photodegradation resulted in oxidation of products.

Determination of Sulfonamides in Meat by Liquid Chromatography Coupled with Atmospheric Pressure Chemical Ionization Mass Spectrometry

  • Kim, Dal-Ho;Choi, Jong-Oh;Kim, Jin-Seog;Lee, Dae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1590-1594
    • /
    • 2002
  • Liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) has been used for the determination of sulfonamides in meat. Five typical sulfonamides were selected as target compounds, and beef meat was selected as a matrix sample. As internal standards, sulfapyridine and isotope labeled sulfamethazine (${13}^C_6$-SMZ) were used. Compared to the results of recent reports, our result have shown improved precision to a RSD of 1.8% for the determination of sulfamethazine spiked with 75 ng/g level in meat.

Accurate Determination of Malachite Green and Leucomalachite Green in Fish using Isotope Dilution Liquid Chromatography/Mass Spectrometry (ID-LC/MS)

  • Ahn, Seong-Hee;Kim, Byung-Joo;Lee, Yun-Jung;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3228-3232
    • /
    • 2010
  • Malachite green (MG) has been used world-widely in aquaculture as a parasiticide or fungicide. Although MG performed successfully, it has not been permitted for use in aquaculture from European Union, USA, and Canada because of its carcinogenicity and mutagenicity. We developed a sensitive and specific method to determine MG and its principal metabolite, leucomalachite green (LMG), respectively by isotope dilution liquid chromatography mass spectrometry (ID-LC/MS). To enhance the extraction recovery of MG and LMG from fish tissue, an additional step, saponification, was introduced in sample preparation process to remove fat in sample extract, which hampered the performance of SPE columns. The residue of MG and LMG in fish was analyzed using liquid chromatography mass spectrometry in the selected ion monitoring (SIM) mode by monitoring at m/z 329 and 334 for MG and $d_5$-MG and at m/z 331 and 337 for LMG and $^{13}C_6$-LMG, respectively. This method was validated by comparing with the value of the reference material provided by Laboratory Government Chemistry (LGC). The results agreed within the measurement uncertainty and the accuracy was much improved than the provided reference value by LGC.

Effects of Column Length and Particle Diameter on Phospholipid Analysis by Nanoflow Liquid Chromatography-Electrospray Ionization-Mass Spectrometry

  • Lee, Ju-Yong;Lim, Sang-Soo;Moon, Myeong-Hee
    • Mass Spectrometry Letters
    • /
    • 제2권3호
    • /
    • pp.65-68
    • /
    • 2011
  • The effects of column length and particle size on the efficiency of separation and characterization of phospholipids (PLs) are investigated using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Since PLs are associated with cell proliferation, apoptosis, and signal transduction, it is of increasing interests in lipidomics to establish reliable analytical methods for the qualitative and quantitative profiling of PLs related to biomarker development in adult diseases. Due to the complexity of PLs, the preliminary separation of PLs is necessary prior to MS analysis. In this study, length of capillary column and the particle size of reversed phase ($C_{18}$) packing materials are varied to find a reliable condition for the high speed and high resolution separation using 8 PL standard mixtures. From experiments, it was found that a capillary column of nLC-ESI-MS-MS analysis for PL mixtures can be minimized to a 5 cm long pulled tip column packed with 3 ${\mu}m$ $C_{18}$ particles without losing resolution.

Optimization of Enzyme Digestion Conditions for Quantification of Glycated Hemoglobin Using Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry

  • Jeong, Ji-Seon
    • Mass Spectrometry Letters
    • /
    • 제5권2호
    • /
    • pp.52-56
    • /
    • 2014
  • Glycated hemoglobin (HbA1c) is used as an index of mean glycemia over prolonged periods. This study describes an optimization of enzyme digestion conditions for quantification of non-glycated hemoglobin (HbA0) and HbA1c as diagnostic markers of diabetes mellitus. Both HbA0 and HbA1c were quantitatively determined followed by enzyme digestion using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) with synthesized N-terminal hexapeptides as standards and synthesized isotope labeled hexapeptides as internal standards. Prior to quantification, each peptide was additionally quantified by amino acid composition analysis using ID-LC-MS/MS via acid hydrolysis. Each parameter was considered strictly as a means to improve digestion efficiency and repeatability. Digestion of hemoglobin was optimized when using 100 mM ammonium acetate (pH 4.2) and a Glu-C-to-HbA1c ratio of 1:50 at $37^{\circ}C$ for 20 h. Quantification was satisfactorily reproducible with a 2.6% relative standard deviation. These conditions were recommended for a primary reference method of HbA1c quantification and for the certification of HbA1c reference material.

토양 중 음이온 바이오사이드의 HPLC-MS/MS 동시 정량분석법 (Simultaneous and quantitative determination of anion biocides in soil by liquid chromatography-tandem mass spectrometry)

  • 양은영;신호상
    • 분석과학
    • /
    • 제28권5호
    • /
    • pp.317-322
    • /
    • 2015
  • 토양 중 음이온 바이오사이드인 chlorite, chlorate, cyanuric acid와 sodium dodecylbenzenesulfonate (Na-DBS)의 liquid chromatography-tandem mass spectrometry (LC-MS/MS) 동시 분석방법을 개발하였다. Chlorite와 chlorate는 물로 추출하였으며, cyanuric acid와 Na-DBS는 0.25 mM ammonium formate를 함유한 20 mM formic acid와 acetonitrile (1:1) 이동상을 이용하여 추출하였다. 추출물은 필터 후 직접 LC-MS/MS로 주입하였다. 분석물질이 검출되지 않는 토양에 각 성분들을 첨가한 후 정도관리를 실시한 결과 검출한계는 chlorite 0.04 mg/kg, chlorate 0.04 mg/kg, cyanuric acid 0.27 mg/kg 그리고 Na-DBS의 경우는 0.05 mg/kg 이었다. 이 방법을 사용하여 우리나라 AI로 소독제를 많이 사용한 장소 40개 지역과 사용하지 않은 지역 10개 대조 지역의 토양을 분석한 결과 대조지역을 포함한 모든 조사지역에서 네 가지 음이온 모두 검출되지 않았다.

LC/MS/MS를 이용한 유기인계 농약류의 최적 분석법 정립과 원·정수에서의 모니터링 (Development of Analytical Method and Monitoring of Organophosphorus Pesticides in the Raw Water and Clean Water by Liquid Chromatography-Tandem Mass Spectrometry)

  • 김경아;송미정;염훈식;손희종;이상원;최진택
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1569-1582
    • /
    • 2015
  • The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.

LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry)를 이용한 패류 및 피낭류 중 아자스필산 분석법의 유효성 검증 (Verification of Analytical Method of Azaspiracid Toxins in Shellfish and Tunicates by Liquid Chromatography-Tandem Mass Spectrometry)

  • 조성래;정상현;박큰바위;윤민철;김동욱;손광태;하광수
    • 한국수산과학회지
    • /
    • 제54권4호
    • /
    • pp.404-410
    • /
    • 2021
  • Although, mouse bioassay for the monitoring of azaspiracids (AZAs) toxins in shellfish has been used previously, the reported method has low sensitivity and it is time-consuming. Recently, there is an interest in the quantitative analysis of AZAs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purpose of this study is to verify the simultaneous analysis of AZAs in shellfish and tunicate in Korea using LC-MS/MS. To validate the method, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and repeatability were determined. All standard compounds were analyzed within 7 min. The correlation coefficients (R2) of the standard solution was higher than 0.9995 (within the range of 0.8-10.0 ㎍/L). The LODs and LOQs of AZAs in shellfish were 0.08-0.16 ㎍/kg and 0.23-0.50 ㎍/kg, respectively. The accuracy and precision of the method for determining AZAs in shellfish were 87.1-93.0% and 1.23-4.91%, respectively. Consequently, the verified LC-MS/MS method is suitable to analyze AZAs in shellfish and tunicates in Korea.

Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of ε-Acetamidocaproic Acid in Rat Plasma

  • Kim, Tae Hyun;Choi, Yong Seok;Choi, Young Hee;Kim, Yoon Gyoon
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.203-209
    • /
    • 2013
  • A simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of ${\varepsilon}$-acetamidocaproic acid (AACA), the primary metabolite of zinc acexamate (ZAC), in rat plasma by using normetanephrine as an internal standard. Sample preparation involved protein precipitation using methanol. Separation was achieved on a Gemini-NX $C_{18}$ column ($150mm{\times}2.0mm$, i.d., 3 ${\mu}m$ particle size) using a mixture of 0.1% formic acid-water : acetonitrile (80 : 20, v/v) as the mobile phase at a flow rate of 200 ${\mu}l/min$. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.0 min, and the calibration curves of AACA were linear over the concentration range of 20~5000 ng/ml in rat plasma. The coefficient of variation and relative error at four QC levels were ranged from 1.0% to 5.8% and from -8.4% to 6.6%, respectively. The present method was successfully applied for estimating the pharmacokinetic parameters of AACA following intravenous or oral administration of ZAC to rats.