• Title/Summary/Keyword: lipid nanoparticles

Search Result 48, Processing Time 0.023 seconds

In vitro Anticancer Activity of Paclitaxel Incorporated in Low-melting Solid Lipid Nanoparticles

  • Lee, Mi-Kyung;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • Triglyceride solid lipid with medium chain fatty acid, tricaprin (TC), was used as a core matrix of lipid nanoparticles (LN) to solubilize water-insoluble paclitaxel and enhance the stability of nanoparticles by immobilization of incorporated drug in the solid core during storage at low temperature. In the present study, TC-LN containing paclitaxel was prepared by hot melt homogenization method using TC as a core lipid and phospholipids as stabilizers. The particle size of TC-LN containing paclitaxel was less than 200 nm and its zeta potential was around -40 mV. Calorimetric analysis showed TC core could be solidified by freezing and thawing in the manufacturing process in which the hot dispersion should be prepared at elevated temperature and subsequently cooled to obtain solid lipid nanoparticles. The melting transition of TC core was observed at $27.5^{\circ}C$, which was lower than melting point of TC bulk. The particle size of TC-LN remained unchanged when kept at $4^{\circ}C$. Paclitaxel containing TC-LN showed comparable anticancer activity to the Cremophore ELbased paclitaxel formulation against human ovarian (OVCAR-3) and breast (MCF-7) cancer cell lines. Thus, lipid nanoparticles with medium chain solid lipid may have a potential as alternative delivery system for parenteral administration of paclitaxel.

Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes

  • Kim, Jeong Tae;Barua, Sonia;Kim, Hyeongmin;Hong, Seong-Chul;Yoo, Seung-Yup;Jeon, Hyojin;Cho, Yeongjin;Gil, Sangwon;Oh, Kyungsoo;Lee, Jaehwi
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.452-459
    • /
    • 2017
  • In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

Solid Lipid Nanoparticles as Drug Delivery System for Water-Insoluble Drugs

  • Li, Rihua;Lim, Soo-Jeong;Choi, Han-Gon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.63-73
    • /
    • 2010
  • Solid lipid nanoparticles (SLNs) have emerged to combine the advantages of polymeric nanoparticles and lipid emulsions in early 1990s. SLNs can present several desirable properties derived from the solid state core. When formulating SLNs, there should be careful considerations about the physical state of the inner solid lipid core and its polymorphism and supercooling behavior. In this review, SLNs were compared to lipid emulsion and emulsion of supercooled melt to understand the unusual behaviors compared to lipid emulsions and to have insights into stability and release mechanism. SLNs have been regarded as biocompatible system because lipids are usually well-tolerable ingredients than polymers. Several studies showed good tolerability of SLNs in terms of cytotoxicity and hemolysis. Similar to various other nanoparticulate drug delivery systems, SLNs can also change biodistribution of the incorporated drugs in a way to enhance therapeutic effect. Most of all, large scale production of SLNs was extablished wihtout using organic solvents. Although there is no SLN product in the market till date, several advantagious properties of SLNs and the progress we have seen so far would make commercial product of SLNs possible before long and encourage research community to apply SLN-based formulations for water-insoluble drugs.

Thermo-sensitive lipid nanoparticles as a novel topical delivery system of retinol

  • Jee, Jun-Pil;Lee, Mi-Kyung;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.425.2-425.2
    • /
    • 2002
  • The purpose of this study was to prepare thermo-sensitive solid-lipid nanoparticles (SLNs) with a lipid melted at human body temperature and to evaluate physicochemical properties of SLNs containing retinol. anti-wrinkle agent. as a model drug. SLNs were prepared using a high pressure homogenizing method. The SLNs were composed of retinol as a model drug. thermo-sensitive lipid (DS-CBS) as a lipid core. and egg phosphatidylcholine and Tween 80 as surfactants. Manufacturing variables such as homogenization pressure. (omitted)

  • PDF

Preparation and Drug Release Profiles of Solid Lipid Nanoparticles(SLN) (의약품의 Solid Lipid Nanoparticle의 제조 및 용출특성)

  • Yoo, Hye-Jong;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.125-135
    • /
    • 1996
  • Solid lipid nanoparticles(SLN) are particulate systems for parenteral drug administration and suitable for controlled release. SLN were prepared by homogenization process. Dispersion at increased temperature (molten lipid) was performed to yield SLN loaded with lipophilic drugs. Tetracaine base, lidocaine base, prednisolone, methyltestosterone and ethinylestradiol were used as model drugs to access the loading capacity and to study the release behavior. To investigate production parameters(lipids, surfactant concentration, homogenizing rpm) in the formation of SLN, particle size was performed by laser diffraction analysis. The mean particle size of SLN with stearic acid or trilaurin was below 1 micron. By decreasing the particle size and increasing the surfactant concentration, the release rate was increased especially in the case of highly lipophilic drug loaded SLN. Methyltestosterone or ethinylestradiol loaded SLN showed a distinctly prolonged release over a few days.

  • PDF

Preparation of Smart Probiotic Solid Lipid Nanoparticles (SLN) for Target Controlled Nanofood

  • Kim, Dong-Myung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.5-10
    • /
    • 2007
  • Ultrasonication was employed to prepare solid lipid nanoparticles (SLN) for smart probiotic nanoparticles as a nanofood. The model probiotic material, lactocin from Lactobacillus plantarum (CBT-LP2), was incorporated into SLN. The CBT-LP2 loaded SLN (CBT-LP2-SLN) were spherical in the photograph of scanning electron microscope (SEM). The particle size measured by laser diffraction (LD) was found to be $97.3{\pm}8.2nm$. Zeta potential analyzer suggested the zeta potential of LP-SLN was $-29.36{\pm}3.68$ mV in distilled water. The entrapment efficiency (EE%) was determined with the sephadex gel chromatogram and high-performance liquid chromatogram (HPLC), and up to 90.59% of nanofood was incorporated. Stability evaluation showed relatively long-term stability with only slight particle growth (P>0.05) after storage at room temperature for 4 weeks. Therefore, ultrasonication is demonstrated to be a simple, available and effective method to prepare high quality SLN loaded probiotic material.

  • PDF

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.

Study of Lipid Coated Polymeric Nanoparticles for Lung Metastasis (폐 전이 암에 대한 Lipid Coated Polymeric Nanoparticles에 관한 연구)

  • Park, Junyoung;Park, Sanghyo;Jo, Yerim;Jeong, Minji;Kim, Inwoo;Kang, Wonjun;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.147-152
    • /
    • 2018
  • Lung cancer and pulmonary metastasis are the leading cause of cancer mortality worldwide. Survival for patients with lung metastases is about 5%. Nanoparticles have been developed for the imaging and treatment of various cancers, including pulmonary malignancies. In this work, we report lipid coated polymeric nanoparticles (LPNs) with an average diameter of 154 nm. In vivo performance of LPNs was characterized using optical imaging system. We expect this nanoparticle can be used for finding lung cancer or lung metastasis. Eventually loading therapeutic drug with the nanoparticle will be utilized for cancer diagnosis and effective therapy at the same time.

A Hot Melt w/o/w Emulsion Technique Suitable for Improved Loading of Hydrophilic Drugs into Solid Lipid Nanoparticles (현탁된 고형지질나노입자 내로 친수성 약물의 봉입률을 증대시키기 위한 w/o/w 에멀션 가온용융유화법의 평가)

  • Lee, Byoung-Moo;Choi, Sung-Up;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Recently increasing attention has been focused on solid lipid nanoparticles (SLN) as a parenteral drug carrier due to its numerous advantages that can come from both polymeric particle and fat emulsions, together with the possibility of controlled release and increasing drug stability. Lipophilic drugs such as paclitaxel, cyclosporin A, and all-trans retinoic acid have been successfully entrapped in SLN but the incorporation of hydrophilic drugs in SLN is very limited because of their very low affinity to the lipid. Therefore, as a new approach to improve the loading of hydrophilic drugs, a w/o/w emulsion technique has been developed. The primary objective of the current study was to improve the loading efficiency of a model hydrophilic drug, glycine (Log P = -3.44) into SLN. The proposed preparation process is as follows: A heated aqueous phase consisting of 0.1 ml of glycine solution in water (100 mg/ml), and poloxamer 188 (5 mg) were then added to a molten oil phase containing precirol (100 mg) and lecithin (5 mg). This mixture was dispersed by sonicator, leading to a w/o emulsion. A double emulsion (w/o/w) was formed after the addition of 2% poloxamer solution to the above dispersed system. After cooling the double emulsion, solid lipid nanosuspensions were successfully formed. The lipid nanoparticles had the mean particle size of 441.25 nm, and the average zeta potential of -20.98 mV. The drug loading efficiency was measured to be 8.54% and the drug loading amount was measured to be 0.92%. The w/o/w emulsion method showed an increased loading efficiency compared to conventional o/w emulsion method.

Sustained Protein Delivery System using Core/shell Nanoparticles

  • Oh, Keun-Sang;Koo, Hyoung-Mo;Yuk, Soon-Hong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.180-180
    • /
    • 2006
  • A novel preparation method for core/shell nanoparticles with protein drug-loaded lipid core was designed and characterized. The lipid core is composed of lecithin and protein drug and the polymeric shell is composed of Pluronics (poly (ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127 For the application of core/shell nanoparticles as a protein drug carrier, lysozyme and Vascular Endothelial Growth Factor (VEGF) were loaded into the core/shell nanoparticles by electrostatic interaction and the drug release pattern was observed by manipulating the polymeric shell.

  • PDF