• Title/Summary/Keyword: lipid droplet

Search Result 126, Processing Time 0.022 seconds

Comparative Study on the Fine Structure of Small Cells in the Space of Disse of Various Animal Livers (각종 동물 간소엽내 Disse강의 소세포에 관한 미세구조적 비교 연구)

  • Hwang, Seung-Jun;Shin, Young-Chul
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.15-32
    • /
    • 1992
  • This study was an attempt to investigate and compare the fine structure of small cells in the space of Disse of various animal livers. All animal livers contained small cells with or without lipid droplets and the one with lipid droplet seemed to be more developed and show an abundance of activity in function. The fine structure of the small cells observed in the nonmammals was similar to that of Ito cell in the mammal. The electron density of the small cells was similar to that of other cell types in the same animal liver. The cisternal dilation of rough endoplasmic reticulum and Golgi apparatus was more predominant in the mammalian Ito cells. In the nonmammalian, aquatic vertebrates, however, lysosomes and filaments are much more abundant in the Ito cell and its abundant cytoplasmic processes rich in filaments were usually extended between the parenchymal cells. The disparity in size of organelles and numbers of lipid droplets in the small cells showed a tendency similar to those of other cell types in the same animal. From these results, it is considered that the small cells in the space of Disse is a Ito cell and the Ito cell without lipid droplets differentiates into the one containing lipid droplets according to the characteristics of the different animals respectively, and that the Ito cells in the mammals are more active in metabolic function, while those in the nonmammalian aquatic vertebrates are abundant in support of parenchyme.

  • PDF

Effects of Micro-current Stimulation on lipid metabolism in Oleic Acid-Induced Non-Alcoholic Fatty Liver disease in FL83B cells (올레산으로 유도된 비알코올성 지방간 세포 모델에서의 미세전류 자극의 지질 대사 조절 효능 평가)

  • Lee, Hana;Lee, Minjoo;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Non-alcoholic fatty liver disease(NAFLD) is excessive hepatic lipid accumulation mainly caused by obesity. This study aimed to evaluate whether micro-current stimulation(MCS) could modulate lipid metabolism regarding the Sirt1/AMPK pathway, fatty acid β-oxidation pathway, and lipolysis and lipogenesis-related factors in FL83B cells. For the NAFLD cell model, FL83B cells were treated with oleic acid for lipid accumulation. MCS were stimulated for 1 hr and used frequency 10 Hz, duty cycle 50%, and biphasic rectangular current pulse. The intensity of MCS was divided into 50, 100, 200, and 400 ㎂. Through the results of Oil red O staining, it was confirmed that MCSs with the intensity of 200 ㎂ and 400 ㎂ significantly reduced the degree of lipid droplet formation. Thus, these MCS intensities were applied to western blot analysis. Western blot analysis was performed to analyze the effects of MCS on lipid metabolism. MCS with the intensity of 400 ㎂ showed that significantly activated the Sirt1/AMPK pathway, a key pathway for regulating lipid metabolism in hepatocytes, and fatty acid β-oxidation-related transcription factors. Moreover, it activated the lipolysis pathway and suppressed lipogenesis-related transcription factors such as SREBP-1c, FAS, and PPARγ. In the case of MCS with the intensity of 200 ㎂, only PGC1α and SREBP-1c showed significant differences compared to cells treated only with oleic acid. Taken together, these results suggested that MCS with the intensity of 400 ㎂ could alleviate hepatic lipid accumulation by modulating lipid metabolism in hepatocytes.

Effect of the Feeding Platycodon grandiflorum on Lipid Components of Liver and Liver Function in Hypercholesterolemia Rats (도라지의 급이가 고콜레스테롤혈증 흰쥐의 간기능 및 간조직의 지질조성에 미치는 영향)

  • 김희숙;김군자;김한수
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.312-318
    • /
    • 1998
  • The object of this study was to investigate the effects of the feeding mixed with powders and extracts of Platycodon grandiflorum (4 or 22 years) on the lipid metabolism of liver in rats. After cholesterol-feorats of Sprague-Dawley strain were fed 5% level of frozen powder, fiber, saponin and ethanol extract for 3 weeks, the activity of enzymes related to liver function, liver tissue and lipid components of liver were examined. The activity of enzymes was significantly lower in the P. grandiflorum powder diet group than in control. The concentration of total cholesterol in liver was rather lower in powder and fiber diet group of each P. grandiflorum than in the other experimental groups, and triglyceride concentration was rather lower in all experimental groups than in the control group, while phospholipid was not significant. On observing through electromicroscope of liver tissue, there was showed to increase fat droplet in control group, but decrease fat droplet in all experimental groups, and glycogen was found to accumulate in rats fed twenty-two years P. grandiflorum.

  • PDF

Interaction of the Lysophospholipase PNPLA7 with Lipid Droplets through the Catalytic Region

  • Chang, Pingan;Sun, Tengteng;Heier, Christoph;Gao, Hao;Xu, Hongmei;Huang, Feifei
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.286-297
    • /
    • 2020
  • Mammalian patatin-like phospholipase domain containing proteins (PNPLAs) play critical roles in triglyceride hydrolysis, phospholipids metabolism, and lipid droplet (LD) homeostasis. PNPLA7 is a lysophosphatidylcholine hydrolase anchored on the endoplasmic reticulum which associates with LDs through its catalytic region (PNPLA7-C) in response to increased cyclic nucleotide levels. However, the interaction of PNPLA7 with LDs through its catalytic region is unknown. Herein, we demonstrate that PNPLA7-C localizes to the mature LDs ex vivo and also colocalizes with pre-existing LDs. Localization of PNPLA7-C with LDs induces LDs clustering via non-enzymatic intermolecular associations, while PNPLA7 alone does not induce LD clustering. Residues 742-1016 contains four putative transmembrane domains which act as a LD targeting motif and are required for the localization of PNPLA7-C to LDs. Furthermore, the N-terminal flanking region of the LD targeting motif, residues 681-741, contributes to the LD targeting, whereas the C-terminal flanking region (1169-1326) has an anti-LD targeting effect. Interestingly, the LD targeting motif does not exhibit lysophosphatidylcholine hydrolase activity even though it associates with LDs phospholipid membranes. These findings characterize the specific functional domains of PNPLA7 mediating subcellular positioning and interactions with LDs, as wells as providing critical insights into the structure of this evolutionarily conserved phospholipid-metabolizing enzyme family.

Sterol regulatory element-binding proteins involved in reprogramming of lipid droplet formation after rotavirus infection

  • Naveed, Ahsan;Baek, Yeong-Bin;Soliman, Mahmoud;Sharif, Muhammad;Park, Sang-Ik;Kang, Mun-Il
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.195-207
    • /
    • 2021
  • Species A rotaviruses (RVAs) replicate and assemble their immature particles within electron dense compartments known as viroplasms, where lipid droplets (LDs) interact with the viroplasm and facilitate viral replication. Despite the importance of LD formation in the life cycle of RVAs, the upstream molecules modulating LD formation remain unclear. This study aimed to find out the role of sterol regulatory element-binding proteins (SREBPs) in reprogramming of LD formation after RVA infection. Here, we demonstrate that RVA infection reprograms the sterol regulatory element-binding proteins (SREBPs)-dependent lipogenic pathways in virus-infected cells, and that both SREBP-1 and -2 transactivated genes, which are involved in fatty acid and cholesterol biosynthesis, are essential for LD formation. Our results showed that pharmacological inhibition of SREBPs using AM580 and betulin and inhibition of their downstream cholesterol biosynthesis (simvastatin for HMG-CoA reductase) and fatty acid enzymes (TOFA) negatively modulated the intracellular triacylglycerides and cholesterol levels and their resulting LD and viroplasm formations. Interestingly, pharmacological inhibition of SREBPs significantly reduced RVA protein synthesis, genome replication and progeny production. This study identified SREBPs-mediated lipogenic reprogramming in RVA-infected host cells, which facilitates virus replication through LD formation and its interaction with viroplasms, suggesting that SREBPs can be a potential target for the development of efficient and affordable therapeutics against RVA infection.

Microstructural Changes of Mayonnaise during Storage (마요네즈 저장 중 미세구조의 변화)

  • Song, Young-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.300-306
    • /
    • 1990
  • The microstrutural changes of mayonnaise during storage were examined by light microscopy (LM) and scanning electron microscopy (SEM). Fresh mayonnaise was composed of heterogenous population of dispersed spherical oil droplets and droplet size was normally distributed with one mode. During storage at $60^{\circ}C\;and\;-10^{\circ}C$, a shift in droplet size distribution toward larger droplets was observed, as a result of coalescence of lipid droplets. Turbidimetric study also confirmed that coalescence was occurring during this accelerated aging treatments. Measurements obtained from SEM microgrphs provided better determination of smaller droplets and resulted in lower mean diameter of droplets than those obtained from LM. From these results, SEM was found to be an advantageous method of examining emulsion products as compared to LM, providing a better resolution of small droplets and a more representative view of droplet distribution, as dilution of the sample was avoided.

  • PDF

SEPARATION, IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM ALFALFA PLANT (알팔파의 생리활성물질 분리 및 동정)

  • Chung, Ill-Min;Kim, Ki-June
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.403-411
    • /
    • 1994
  • To isolate, purity and identify of bioactive compounds involved in alfalfa allelopathy and/or autotoxicity, experiment was conducted. Isolation and separation procedures used from an 80% methanol extract of fresh alfalfa leaves(1kg), silica gel thin layer chromatography(TLC), followed by Droplet Counter Current Chromatography(DCCC). Preliminary identification was examined by high preformance lipid chromatography(HPLC). Four phenolic compound, salicylic acid, scopoletin, rutin, and quercetin, were identified and identified all compounds were phytotoxic to alfalfa seed germination and seedling growth. Among these compounds, quercetin treatment($10^{-3}M$) was most inhibitory to alfalfa seed germination and seedling growth. These compounds may be, at least in part, involved autotoxicity and allelopathy.

  • PDF

Effect of Eicosapentaenoic Acid on Cellular Lipid Accumulation and Transcription Factors Involving Glucose Utilization (에이코사펜타에노익산에 의한 세포 내에서의 지방 축적 억제 효과 및 포도당 대사에 관여하는 전사인자의 변화)

  • Bu, So-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.501-508
    • /
    • 2011
  • Previous studies suggest that polyunsaturated fatty acids with long carbon chains such as eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) have several health benefits. However metabolic consequences of these fatty acids themselves and their regulation of transcriptional activity involving glucose utilization are not well established. Thus, the purpose of this study was to investigate how EPA influx affects cellular lipid accumulation and gene expressions involving $de$ $novo$ lipogenesis in hepatocyte cultures. Compared to oleic acid treatment, EPA treatment showed remarkably decreased cellular TG conversion and accumulation, along with phospholipids at a lower extent. As expected, EPA increased mRNA expression involving fatty acid influx and lipid droplet formation, but did not affect mRNA expression involving glucose utilization. EPA increased transcriptional activity of PPAR-${\alpha}$ and glucose responsive transcription factor when transcription factor binding protein was activated. Taken together, these data suggest that EPA decreases lipid accumulation through increases of the ${\beta}$-oxidation pathway without interruption of glucose utilization.

Microorganism lipid droplets and biofuel development

  • Liu, Yingmei;Zhang, Congyan;Shen, Xipeng;Zhang, Xuelin;Cichello, Simon;Guan, Hongbin;Liu, Pingsheng
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.575-581
    • /
    • 2013
  • Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from $CO_2$ via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.

Muscle Quality of Cultured and Wild Red sea bream (Pagrosomus auratus) (양식 및 자연산 도미(Pagrosomus auratus) 어육의 품질 특성에 관한 연구)

  • Lee, Kyung Hee;Lee, Young Soon
    • Korean journal of food and cookery science
    • /
    • v.15 no.6
    • /
    • pp.639-644
    • /
    • 1999
  • The objective of this study was to compare the quality characteristics of cultured and red sea bream. The color of dorsal muscle was different between wild and cultured red sea bream. Lipid content of the dorsal muscle was higher in cultured fish than in wild one. The contents of moisture and crude protein in cultured fish muscle were almost same as those of wild one. Sensory evaluation of raw fish meat showed that cultured fish had lower preference in appearance, taste and texture than wild one. Especially the texture of cultured raw fish meat had lower preference than wild meat. For cooked fish meat, cultured fish were harder and less juicy than wild fish. These textural differences between wild and cultured meats were confirmed by objective evaluation including the measurements of hardness, springiness, and cohesiveness. Light microscopic observation showed that cultured red sea bream had more lipid in the surface layer near epidermis than wild one. Also more lipid droplet between muscle fibers were observed in cultured red sea bream by SEM.

  • PDF