• 제목/요약/키워드: lipid accumulation

Search Result 942, Processing Time 0.027 seconds

Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice

  • Yu, Wan-Guo;He, Yun;Chen, Yun-Fang;Gao, Xiao-Yao;Ning, Wan-E;Liu, Chun-You;Tang, Ting-Fan;Liu, Quan;Huang, Xiao-Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.

Inhibitory Effects of Allium sacculiferum Max. Methanol Extracts on ROS Production and Lipid Accumulation during Differentiation of 3T3-L1 Cells (참산부추(Allium sacculiferum Max.) 메탄올 추출물의 지방세포 내 ROS 생성 및 지질 축적 억제 효능)

  • Choi, Hye-Young;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.822-828
    • /
    • 2014
  • Allium sacculiferum Max. (ASM) is a perennial plant of the Liliaceae family and grows over the entire regions of Korea. Obesity is a serious health problem worldwide and has currently become a prevalent chronic disease. Adipocytes produced by preadipocyte differentiation during adipogenesis and adipocytes combined with abnormal accumulation cause obesity. Recently, intracellular reactive oxygen species (ROS) were shown to accelerate lipid accumulation in 3T3-L1 cells. In this study, we investigated the effects of ASM methanol extracts on ROS production and lipid accumulation in 3T3-L1 adipocytes. Our results indicate that the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of ASM methanol extracts increased in a dose-dependent manner. ASM methanol extracts suppressed ROS production and lipid accumulation during adipogenesis. In addition, ASM methanol extracts inhibited the mRNA expression of both pro-oxidant enzymes such as glucose-6-phosphate dehydrogenase as well as the transcription factors, including sterol regulatory element-binding proteins 1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer-binding protein ${\alpha}$. Our results suggest that ASM methanol extracts inhibit ROS production and lipid accumulation by controlling ROS regulatory genes and adipogenic transcription factors. Thus, ASM has potent natural antioxidant, anti-adipogenic properties and have potential in the development of a potent anti-obesity agent.

Effects of Piperine on Insulin Resistance and Lipid Accumulation in Palmitate-treated HepG2 Cells (Palmitate처리된 인간 간세포주 HepG2 세포에서 piperine의 지질 축적과 인슐린 저항성 기전에 대한 연구)

  • Jung, Hee Jin;Bang, EunJin;Jeong, Seong Ho;Kim, Byeong Moo;Chung, Hae Young
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.964-971
    • /
    • 2019
  • Hepatic lipid accumulation and insulin resistance increases in patients with non-alcoholic fatty liver disease. Piperine is a major compound found in black pepper (Piper nigrum) and long pepper (P. longum). Piperine has been used in fine chemical for its anti-cancer, anti-obesity, anti-diabetic, anti-inflammatory and anti-oxidant properties. However, the signaling-based mechanism of piperine and its role as an inhibitor of lipogenesis and insulin resistance in human hepatocyte cells remains ill-defined. In the present study, we explored the effects of piperine on lipid accumulation and insulin resistance, and explored the potential underlying molecular mechanisms in palmitate-treated HepG2 cells. Piperine treatment resulted in a significant reduction of triglyceride content. Furthermore, piperine treatment decreased palmitate-treated intracellular lipid deposition by inhibiting the lipogenic target genes, sterol-regulatory-element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS); whereas the expression of carnitine palmitoyl transferase (CPT-1) and phosphorylation of acetyl coenzyme A carboxylase (ACC) gene involved in fatty acid oxidation was increased. Moreover, piperine also inhibited the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307). Piperine treatment modulated palmitate-treated lipid accumulation and insulin resistance in HepG2 cells with concomitant reduction of lipogenic target genes, such as SREBP-1 and FAS, and induction of CPT-1-ACC and phosphorylation of IRS-1 (Tyr632)-Akt pathways. Therefore, piperine represents a promising treatment for the prevention of lipid accumulation and insulin resistance.

Comparison with various mulberry leaves' and fruit's extract in lipid accumulation inhibitory effect at adipocyte model

  • Kim, Hyun-bok;Lim, Jung Dae;Kim, Ae-Jung;Kim, Yong-Soon;Kwon, O-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In relation to the global increase trend of obesity population, there is a demand for the development of foods having high functional activity by mass-extracting anti-obesity active substances using mulberry product such as leaf and fruit. Therefore, we evaluated the antiobesity efficacy according to varieties by using the mulberry leaves and fruit extracts. At the same time, high active varieties were selected. For this purpose, the effects of the extracts of the mulberry leaf and fruit on 3T3-L1 adipocyte differentiation were examined. As a result, in the case of mulberry leaves, the lipid accumulation inhibitory rate of 'Cheongolppong' was higher than that of the control at $500{\mu}g/ml$ treatment. And in the case of the extract of mulberry fruit, 'Daesim' showed the highest lipid accumulation inhibitory rate compared with the control at 50 times of diluted extract.

Effect of Platycodi radix and Platycodi radix Saponin on Liver Lipid in Rats on a Fed High Fat Diet (길경과 길경 Saponin이 고지방식이 섭취 흰쥐의 간장조직에 미치는 영향)

  • Park, Mu-Hui;Son, Gyu-Mok;Bae, Man-Jong
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.3
    • /
    • pp.222-229
    • /
    • 1995
  • This study was conducted to investigate the effect of the Platycodi radix powder (PRP) and Platycodi radix saponin(PRS) on the reduction of lipid status In rats fed on high fat diet for 6 weeks after which lipid contents were measured in liver. And also by carrying out the histological examination throughout light microscope to observe the effects of fat accumulation reduction. The results obtained from this study are as fellows. In the levels of total lipid in liver, PRS Group significantly decreased compared with Contred Group, but PRP Group was not significantly changed. The content of triglyceride was tended to be slightly decreased in the PRP and PRS groups compared to the control group, which was not significant. It was observed from photomicrographs of hepatic tissue in rats that the PRP and PRS groups inhibits the lipid accumulation induced by high fat diets.

  • PDF

Deciphering Macrophage Phenotypes upon Lipid Uptake and Atherosclerosis

  • Jihye Lee;Jae-Hoon Choi
    • IMMUNE NETWORK
    • /
    • v.20 no.3
    • /
    • pp.22.1-22.21
    • /
    • 2020
  • In the progression of atherosclerosis, macrophages are the key immune cells for foam cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the characteristics and phenotypic changes of macrophages in atherosclerosis and the effect of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic lipid accumulation, showing downregulation of NF-κB activation followed by activation of anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about various in vivo and in vitro models for atherosclerosis research and next generation sequencing technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of macrophages during the progression of atherosclerosis with adequate approach may lead to exact understandings of the cellular mechanisms and hint therapeutic targets for the treatment of atherosclerosis.

A Study on the Effects and Mechanisms of the Combination Extract of Ephedrae Herba and Coicis Semen on Lipid Accumulation and Glucose Absorption in Non-Alcoholic Fatty Liver Disease (마황과 의이인 혼합추출물이 비알콜성 지방간 모델에서 지질 축적 및 포도당 흡수에 미치는 효과 및 기전 연구)

  • Ga-Ram Yu;Hye-Lin Jin;Dong-Woo Lim;Won-Hwan Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Objectives: Ephedrae herba (EH) and Coicis semen (CS) has been frequently prescribed for the treatment of obesity. However, effects of combinational extracts of these two herbs on non-alcoholic fatty liver disease are unknown. The aim of the present study was to investigate the effects of EH and CS on lipid accumulation and glucose absorption in free fatty acids (FFAs) or palmitic acid (PA)-treated HepG2 cells. Methods: Five samples of EH and CS were extracted by combination ratios (S1=0:100, S2=25:75, S3=50:50, S4=75:25, S5=100:0). Oil Red O staining was used to measure lipid accumulation in FFAs-induced steatosis cells. Intracellular triglycerides and total cholesterol levels were measured in FFAs-induced steatotic HepG2 cells. In PA-treated cells, intracellular 2-NBDG was detected using a fluorescence microplate reader and flow cytometry. Phosphorylation of key metabolism-related factors of AMP-activated protein kinase and acetyl-CoA carboxylase, expression of key lipid synthesis-related factors carnitine palmitoyltransferase 1 alpha (CPT1α), sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) were confirmed by western blot. Results: Treatment of EH-CS combination in the FFAs-induced steatotic HepG2 cells significantly reduced lipid accumulation. As the relative ratio of Ephedrae herba increased, the lipid-lowering effects of the combination were increased. However, S1 and S5 of Ephedrae herba and Coicis semen did not significantly reduce triglycerides and total cholesterol induced by FFAs. However, the combination of Ephedrae herba and Coicis semen restored glucose absorption in PA-induced HepG2 cells. Major makers of SREBP1, PPARγ, C/EBPα, and CPT1α expression tended to decrease with EH ratio. Conclusions: The EH-CS combination has advantages over sole EH and CS extracts in improving lipid and glucose metabolism in liver steatosis models.

UV-induced Mutagenesis of Nannochloropsis oculata for the Increase of Lipid Accumulation and its Characterization (자외선 조사에 의한 Nannochloropsis oculata의 지질 축적량 향상 변이주 생성 및 특성 분석)

  • Kim, Jong-Hun;Park, Hyun-Jin;Kim, Young-Hwa;Joo, Hyun;Lee, Sang-Hoon;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2013
  • Research on mutant generation and isolation for microalgae yielding enhanced lipid accumulation is an important issue for the production of economic biodiesel. In the present study, ultraviolet (UV-B type) ray induced mutant generation was tried using a photosynthetic microalgae, Nannochloropsis oculata (N. oculata), for the production of biodiesel. The resulting colonies were isolated and further cultured with both liquid and solid state f/2 media. After a few week cultivation, changes of cell growth rate, dry cell weight, and several important intracellular components (chlorophyll, carotenoid, and lipid) were investigated. Two mutants among thousands colonies showed an increased cell growth and high lipid accumulation as compared to those of wild type. It was also observed that the increased cell growth rate is associated with the overexpressed intracellular proteins. However, the mutants showed a decrease in the chlorophyll biosynthesis.

Pear pomace ethanol extract improves insulin resistance through enhancement of insulin signaling pathway without lipid accumulation

  • You, Mi-Kyoung;Kim, Hwa-Jin;Rhyu, Jin;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.198-205
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The anti-diabetic activity of pear through inhibition of ${\alpha}-glucosidase$ has been demonstrated. However, little has been reported about the effect of pear on insulin signaling pathway in obesity. The aims of this study are to establish pear pomace 50% ethanol extract (PPE)-induced improvement of insulin sensitivity and characterize its action mechanism in 3T3-L1 cells and high-fat diet (HFD)-fed C57BL/6 mice. MATERIALS/METHODS: Lipid accumulation, monocyte chemoattractant protein-1 (MCP-1) secretion and glucose uptake were measure in 3T3-L1 cells. Mice were fed HFD (60% kcal from fat) and orally ingested PPE once daily for 8 weeks and body weight, homeostasis model assessment of insulin resistance (HOMA-IR), and serum lipids were measured. The expression of proteins involved in insulin signaling pathway was evaluated by western blot assay in 3T3-L1 cells and adipose tissue of mice. RESULTS: In 3T3-L1 cells, without affecting cell viability and lipid accumulation, PPE inhibited MCP-1 secretion, improved glucose uptake, and increased protein expression of phosphorylated insulin receptor substrate 1 [p-IRS-1, ($Tyr^{632})$)], p-Akt, and glucose transporter type 4 (GLUT4). Additionally, in HFD-fed mice, PPE reduced body weight, HOMA-IR, and serum lipids including triglyceride and LDL-cholesterol. Furthermore, in adipose tissue, PPE up-regulated GLUT4 expression and expression ratio of p-IRS-1 ($Tyr^{632})/IRS$, whereas, down-regulated p-IRS-1 ($Ser^{307})/IRS$. CONCLUSIONS: Our results collectively show that PPE improves glucose uptake in 3T3-L1 cells and insulin sensitivity in mice fed a HFD through stimulation of the insulin signaling pathway. Furthermore, PPE-induced improvement of insulin sensitivity was not accompanied with lipid accumulation.

Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes

  • Lee, Chae Myoung;Yoon, Mi Sook;Kim, Young Chul
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at $1,000{\mu}g/mL$ was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or $500{\mu}g/mL$ PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and $500{\mu}g/mL$ PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor ${\gamma}$ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein ${\beta}$ and ${\alpha}$ mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells.