DOI QR코드

DOI QR Code

Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes

  • Lee, Chae Myoung (Division of Beauty Cooperation, Keimyung College University) ;
  • Yoon, Mi Sook (Division of Beauty Cooperation, Keimyung College University) ;
  • Kim, Young Chul (Major in Public Health, Faculty of Food & Health Sciences, Keimyung University)
  • Received : 2015.05.13
  • Accepted : 2015.06.14
  • Published : 2015.06.30

Abstract

We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at $1,000{\mu}g/mL$ was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or $500{\mu}g/mL$ PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and $500{\mu}g/mL$ PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor ${\gamma}$ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein ${\beta}$ and ${\alpha}$ mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells.

Keywords

References

  1. Kim, E.J., Jin, X.J., Kim, Y.K., Oh, I.K., Kim, J.E., Park, C.H. and Chung, J.H. (2010) UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J. Dermatol. Sci., 57, 19-26. https://doi.org/10.1016/j.jdermsci.2009.10.008
  2. Li, W.H., Pappas, A., Zhang, L., Ruvolo, E. and Cavender, D. (2013) IL-11, IL-$1{\alpha}$, IL-6, and TNF-${\alpha}$ are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo. J. Dermatol. Sci., 71, 58-66. https://doi.org/10.1016/j.jdermsci.2013.03.009
  3. Kim, E.J., Kim, Y.K., Kim, J.E., Kim, S., Kim, M.K., Park, C.H. and Chung, J.H. (2011) UV modulation of subcutaneous fat metabolism. J. Invest. Dermatol., 131, 1720-1726. https://doi.org/10.1038/jid.2011.106
  4. Rosen, E.D., Walkey, C.J., Puigserver, P. and Spiegelman, B.M. (2000) Transcriptional regulation of adipogenesis. Genes Dev., 14, 1293-1307.
  5. Kim, M.B., Song, Y., Kim, C. and Hwang, J.K. (2014) Kirenol inhibits adipogenesis through activation of the Wnt/${\beta}$-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 445, 433-438. https://doi.org/10.1016/j.bbrc.2014.02.017
  6. Lee, H., Bae, S. and Yoon, Y. (2013) The anti-adipogenic effects of (-) epigallocatechin gallate are dependent on the WNT/${\beta}$-catenin pathway. J. Nutr. Biochem., 24, 1232-1240. https://doi.org/10.1016/j.jnutbio.2012.09.007
  7. Taxvig, C., Specht, I.O., Boberg, J., Vinggaard, A.M. and Nellemann, C. (2013) Dietary relevant mixtures of phytoestrogens inhibit adipocyte differentiation in vitro. Food Chem. Toxicol., 55, 265-271. https://doi.org/10.1016/j.fct.2012.12.060
  8. Relic, B., Zeddou, M., Desoroux, A., Beguin, Y., de Seny, D. and Malaise, M.G. (2009) Genistein induces adipogenesis but inhibits leptin induction in human synovial fibroblasts. Lab. Invest., 89, 811-822. https://doi.org/10.1038/labinvest.2009.41
  9. Cho, K.W., Lee, O.H., Banz, W.J., Moustaid-Moussa, N., Shay, N.F. and Kim, Y.C. (2010) Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPAR gamma transcriptional activity. J. Nutr. Biochem., 21, 841-847. https://doi.org/10.1016/j.jnutbio.2009.06.012
  10. Lee, O.H., Seo, D.H., Park, C.S. and Kim, Y.C. (2010) Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. Biofactors, 36, 459-467. https://doi.org/10.1002/biof.119
  11. Harmon, A.W., Patel, Y.M. and Harp, J.B. (2002) Genistein inhibits CCAAT/enhancer-binding protein beta (C/EBP beta) activity and 3T3-L1 adipogenesis by increasing C/EBP homologous protein expression. Biochem. J., 367, 203-208. https://doi.org/10.1042/BJ20020300
  12. Park, H.J., Della-Fera, M.A., Hausman, D.B., Rayalam, S., Ambati, S. and Baile, C.A. (2009) Genistein inhibits differentiation of primary human adipocytes. J. Nutr. Biochem., 20, 140-148. https://doi.org/10.1016/j.jnutbio.2008.01.006
  13. Rosen, E.D. and Spiegelman, B.M. (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444, 847-853. https://doi.org/10.1038/nature05483
  14. Folin, O. and Denis, W. (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem., 12, 239-243.
  15. Davies, R., Massey, R.C. and McWeeny, D.J. (1980) The catalysis of the N-nitrosation of secondary amines by nitrosophenols. Food Chem., 6, 115-122. https://doi.org/10.1016/0308-8146(80)90027-8
  16. Blois, M.S. (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  17. Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M. and Paschke, R. (2001) Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes. FEBS Lett., 500, 60-63. https://doi.org/10.1016/S0014-5793(01)02588-1
  18. Rayalam, S., Della-Fera, M.A., Yang, J.Y., Park, H.J., Ambati, S. and Baile, C.A. (2007) Resveratrol potentiates genistein's antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J. Nutr., 137, 2668-2673. https://doi.org/10.1093/jn/137.12.2668
  19. Barber, M.C., Price, N.T. and Travers, M.T. (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta, 1733, 1-28. https://doi.org/10.1016/j.bbalip.2004.12.001
  20. Levert, K.L., Waldrop, G.L. and Stephens, J.M. (2002) A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis. J. Biol. Chem., 277, 16347-16350. https://doi.org/10.1074/jbc.C200113200
  21. Schmida, B., Rippmann, J.F., Tadayyon, M. and Hamilton, B.S. (2005) Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem. Biophys. Res. Commun., 328, 1073-1082. https://doi.org/10.1016/j.bbrc.2005.01.067
  22. Wakil, S.J. and Abu-Elheiga, L.A. (2009) Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res., 50, 138-143. https://doi.org/10.1194/jlr.R800079-JLR200
  23. Li, Y.C., Zheng, X.L., Liu, B.T. and Yang, G.S. (2010) Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis. Mol. Cell. Biochem., 333, 121-128. https://doi.org/10.1007/s11010-009-0212-4
  24. Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A. and Zechner, R. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306, 1383-1386. https://doi.org/10.1126/science.1100747
  25. Shen, W.J., Patel, S., Miyoshi, H., Greenberg, A.S. and Kraemer, F.B. (2009) Functional interaction of hormone sensitive lipase and perilipin in lipolysis. J. Lipid Res., 50, 2306-2313. https://doi.org/10.1194/jlr.M900176-JLR200
  26. Villena, J.A., Roy, S., Sarkadi-Nagy, E., Kim, K.H. and Sul, H.S. (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem., 279, 47066-47075. https://doi.org/10.1074/jbc.M403855200
  27. Yang, X., Zhang, X., Heckmann, B.L., Lu, X. and Liu, J. (2011) Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced lipolysis in adipocytes. J. Biol. Chem., 286, 40477-40485. https://doi.org/10.1074/jbc.M111.257923
  28. Li, L., Yang, Y., Yang, G., Lu, C., Yang, M., Liu, H. and Zong, H. (2011) The role of JAZF1 on lipid metabolism and related genes in vitro. Metabolism, 60, 523-530. https://doi.org/10.1016/j.metabol.2010.04.021
  29. Kowalska, K., Olejnik, A., Rychlik, J. and Grajek, W. (2014) Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells. Food Chem., 148, 246-252. https://doi.org/10.1016/j.foodchem.2013.10.032

Cited by

  1. Endosulfan Induces CYP1A1 Expression Mediated through Aryl Hydrocarbon Receptor Signal Transduction by Protein Kinase C vol.31, pp.4, 2015, https://doi.org/10.5487/TR.2015.31.4.339
  2. Enhanced digestive enzyme activity and anti-adipogenic of fermented soy-powder milk with probiotic Lactobacillus plantarum P1201 through an increase in conjugated linoleic acid and isoflavone aglycone content vol.25, pp.4, 2018, https://doi.org/10.11002/kjfp.2018.25.4.461
  3. ) on Adipocyte Differentiation and Mice Fed a High-fat Diet vol.83, pp.9, 2018, https://doi.org/10.1111/1750-3841.14288
  4. 電気インピーダンスを用いた脂肪前駆細胞の脂肪分化および脂肪滴蓄積の長期モニタリング vol.84, pp.864, 2018, https://doi.org/10.1299/transjsme.17-00549