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ABSTRACT

In the progression of atherosclerosis, macrophages are the key immune cells for foam 
cell formation. During hyperlipidemic condition, phagocytic cells such as monocytes and 
macrophages uptake oxidized low-density lipoproteins (oxLDLs) accumulated in subintimal 
space, and lipid droplets are accumulated in their cytosols. In this review, we discussed the 
characteristics and phenotypic changes of macrophages in atherosclerosis and the effect 
of cytosolic lipid accumulation on macrophage phenotype. Due to macrophage plasticity, 
the inflammatory phenotypes triggered by oxLDL can be re-programmed by cytosolic 
lipid accumulation, showing downregulation of NF-κB activation followed by activation of 
anti-inflammatory genes, leading to tissue repair and homeostasis. We also discuss about 
various in vivo and in vitro models for atherosclerosis research and next generation sequencing 
technologies for foam cell gene expression profiling. Analysis of the phenotypic changes of 
macrophages during the progression of atherosclerosis with adequate approach may lead 
to exact understandings of the cellular mechanisms and hint therapeutic targets for the 
treatment of atherosclerosis.
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BASIC FUNCTIONS OF MACROPHAGES AS ESSENTIAL 
IMMUNE CELLS
Macrophages play a fundamental role in the immune system, providing immediate defense 
against pathogens by clearing pathogenic invasions through phagocytosis (1). Macrophages 
are specialized immune cells that degrade engulfed cargo and may also present antigens, 
but are not capable of migrating to lymph node tissues to stimulate T cells as dendritic 
cells do (2). Macrophages respond to the surrounding microenvironment, showing various 
phenotypes and biological functions (3). Pro-inflammatory cytokines may be induced 
through either exogenous or endogenous sources. Exogenous inflammation inducers from 
microorganisms are known as pathogen-associated molecular patterns (PAMPs) and are 
recognized by pattern-recognition receptors (PRRs) (4). Endogenous inflammation inducers 
are produced by damaged cells, release of ATP, K+ ions, and the high-mobility group box 
1 (HMGB1) proteins, which in cooperation with TLRs induce inflammatory responses. 
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Macrophages sense the inflammatory signals and get recruited to the site of tissue injury, 
which is vital for elimination of the inflammation triggers and contributes to tissue repair (5).

Macrophages originate from either yolk sac progenitors before birth or bone marrow-derived 
monocytes after birth (6). Each organ retains different combinations of embryonic and 
adult-derived macrophage subsets, which are maintained by local proliferation and influx of 
circulating blood monocytes (7). A significant proportion of tissue-resident macrophages is 
seeded into the tissues before birth and self-replenish independently of hematopoiesis (8). 
Macrophages from the yolk sac progenitors or fetal liver are tissue-resident and prenatally 
establish the majority of cardiac macrophages, as demonstrated through fate mapping 
studies using the macrophage marker CX3CR1, in vivo cell tracking, parabiosis, and bone 
marrow transplants (9). Bone-marrow-derived hematopoietic stem cells and progenitor 
cells (HSPCs) develop into circulating Ly6Chi monocytes upon the action of M-CSF and 
differentiate into macrophages (10). Under certain circumstances, bone-marrow-derived 
HSPCs populate in the spleen and undergo extramedullary hematopoiesis (11). In the heart, 
Ly6Chi monocytes reside in the cardiac tissue and are the dominant tissue macrophage 
population upon local inflammation (7). These monocyte-derived macrophages are 
recruited through the C-C chemokine receptor 2 (CCR2) and are crucial in the inflammatory 
environment (12). CCR2 expression is typically associated with infiltrating Ly6Chi monocytes 
and is used to distinguish between infiltrating and tissue-resident macrophages (13). 
Bajpai et al also demonstrated that tissue-resident CCR2+ macrophages within the heart 
are responsible for monocyte recruitment through the myeloid differentiation primary 
response 88 (MYD88) pathway, leading to the release of the MCP and contribute to heart 
failure pathogenesis. Unlike monocyte-derived macrophages, tissue-resident macrophages 
contribute to the initiation of inflammation and tissue homeostasis via apoptotic cell 
clearance (14).

CLASSIFICATION OF MACROPHAGE PHENOTYPES: 
INFLAMMATORY AND ANTI-INFLAMMATORY
Among various immune cells, macrophages are remarkably plastic in their ability to respond 
to microenvironmental changes or immunological challenges, also known as macrophage 
polarization, eliciting appropriate responses to the cues. Although macrophages are 
heterogeneous cells, they are broadly classified in two groups: classically activated and 
alternatively activated macrophages. Classically activated macrophages are associated with 
host defense and produce pro-inflammatory cytokines such as TNF and IL-1β, the latter 
resulting from the nucleotide oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, 
and the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome (15). Upon 
recognition of PAMPs through PRRs such as TLRs and NOD receptors, macrophages are 
activated (16). Alternatively-activated or anti-inflammatory macrophages are associated 
with tissue repair, wound healing, and metabolic processes, and maintain homeostasis 
through the production of arginase and specialized pro-resolving mediators such as TGF-β. 
With the aid of pro-resolving mediators such as resolvins and protectins, alternatively-
activated macrophages limit local inflammation and lead to inflammation resolution (17). 
Alternatively-activated macrophages are polarized through TH2 cytokines IL-4, IL-13, or IL-10, 
and show activation of the interferon regulatory factor/STAT via STAT6 (18). Activation of 
PPAR-γ in adipose tissue showed downregulation of classically activated macrophage markers 
such as IL-18, whereas alternatively activated macrophage markers such as arginase 1 and 
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IL-10 were upregulated, suggesting PPAR-γ and alternatively activated macrophages leas to 
tissue remodeling (19). The IL-33 amplifies IL-13-induced macrophage polarization, leading 
to upregulation of arginase-1 (Arg-1), CCL17, and CCL24 (20). In addition, alternatively-
activated macrophages produce CCL13, CCL8, or CCL26 derived from the host defense 
against extracellular pathogens (21). These anti-inflammatory signals are necessary to 
suppress inflammation, leading to tissue remodeling and retaining homeostasis (22).

Although infiltrating monocyte-derived macrophages predominantly express inflammatory 
markers, they develop an anti-inflammatory phenotype after they perform phagocytosis 
(23). Macrophages recruited to the mice kidney performed tissue repair in the late stages 
of inflammation, through the expression of pro-wound healing factors such as the CCL17, 
insulin-like growth factor 1, and platelet-derived growth factor subunit B (24). Lavin et al. 
(25) profiled four histone modifications on various tissue-resident macrophage populations 
and revealed that the local microenvironment reconstructs the tissue-resident macrophage 
enhancer landscape, giving macrophages a combination of tissue- and lineage-specific 
transcription factors, and allowing them to be reprogrammed upon encountering with 
new microenvironments. The ability of macrophages to show resilient characteristics 
corresponding to surrounding cues enables them to polarize and initiate an inflammatory 
response or maintain homeostasis through transcriptional regulation and reprogramming in 
response to exogenous or endogenous stimuli (26).

INITIATION AND PROGRESSION OF ATHEROSCLEROSIS 
UNDER HYPERLIPIDEMIC CONDITION
Atherosclerosis is a chronic inflammatory disease due to the narrowing of arteries, which 
could lead to cardiac arrest, ischemic stroke, myocardial infarction, renal impairment, and 
aneurysms with hypertension (27). Diagnosis of atherosclerosis is made through various 
tests; however, as atherosclerosis is asymptomatic until plaque rupture or side effects caused 
by the narrowing of arteries, it is considered one of the most problematic causes of death in 
western societies. Atherosclerosis results from interactions among modified lipoproteins, 
immune cells such as macrophages and T cells, and non-immune vascular cells such as 
smooth muscle and endothelial cells (28).

Progression of atherosclerosis is initiated with increased lipid accumulation in the subintimal 
space and oxidative modification of lipids. Gerrity et al. (29) demonstrated that blood 
monocytes penetrate the intima adhere to aortic endothelium at early progression stages of 
atherosclerosis. Circulating monocytes adhere to endothelium via P-selectin glycoprotein 
ligand-1 (PSGL-1) interacting with P-selectin and E-selectin, and also endothelium interact 
with vascular cell adhesion molecule 1 (VCAM1) or intercellular adhesion molecule 1 (ICAM1) 
(30,31). CCL2, CCR2, CCR5 and CX3CR1 also contribute to monocyte migration to arterial 
walls (32,33), and IFNβ accelerates lesion formation by enhancing macrophage adhesion to 
endothelial cells and promoting leukocyte infiltration (34).

The blood mononuclear cells are the major foam cell precursor and subsequently undergo 
transformation into macrophages (35). Phagocytic cells such as monocytes or macrophages 
uptake and deposit oxidized low-density lipoproteins (oxLDL) via diverse mechanisms 
such as action of scavenger receptors, cholesterol hydrolysis, or phagocytosis, during which 
membrane-bound lipid droplets are accumulated and lead to foam cell formation (36). 
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Macrophages participate in all developmental phases of atherosclerosis and affect the status of 
a lesion through cellular responses, such as cytokine secretion, apoptosis, and necrosis.

Apart from mononuclear phagocytes, numerous adaptive immune cells are involved in 
atherosclerosis progression. In the arterial adventitia, large numbers of naïve T cells, CD4+ 
and CD8+ T cells, regulatory T cells (Tregs), and memory B cells are recruited (37). These 
adaptive immune cells play perplexing roles in atherosclerosis, inducing proatherogenic 
effects through the CD4+ Th1 effector cells to release proinflammatory cytokines, IFN-γ, 
and TNF, or inhibiting inflammation through the secretion of anti-inflammatory cytokines, 
TGF-β, and IL-10 through activated Tregs (38). During atherosclerosis progression, FoxP3 
expressing Tregs are overwhelmed by effector T cells, replacing athero-protective immunity 
with proatherogenic functions (39). T lymphocytes and macrophages are dominant in 
ruptured plaques, and combinatorially generate plaque rupture or superficial erosion 
conditions (40). The immediate site of plaque rupture or erosion is characterized with an 
inflammatory process, with abundant expression of HLA-DR antigens on inflammatory cells. 
B cells develop into innate-like B1 cells or adaptive-functioning B2 cells, the former recognize 
low-density lipoprotein (LDL) epitopes and release low-affinity IgM antibodies, and the latter 
differentiate into plasma cells and express high-affinity IgG antibodies against atherogenic 
antigens and show athero-protective responses (39).

MACROPHAGES IN PROGRESSION AND REGRESSION OF 
ATHEROSCLEROSIS
The progression and exacerbation of atherosclerosis is regulated between recruitment and 
emigration of macrophages within the plaque. At early plaque stages, luminal movement 
of Ly6Chi monocyte-derived macrophages show initial response and emigrate into the 
artery, and increase up to 20-fold within mouse aorta by proliferation (41,42). However, as 
macrophages become foam cells, emigration capacity is diminished and less emigration is 
detected in progressive plaques (43). Plaque macrophages promote lesional progression into 
rupture-prone plaques with impeded inflammation resolution, which drives macrophage 
apoptosis, inhibition of efficient efferocytosis and apoptotic cell accumulation leading to 
necrotic core formation in atherosclerotic plaque (42).

Several heterogenous macrophage subsets are classified in murine atherosclerotic 
cardiovascular disease. Hemoglobin associated macrophages (Mhem) phagocytize 
erythrocyte remnants via CD163 and provoke secretion of anti-inflammatory cytokines such 
as IL-10 and cardio-protective responses (44). Mhem macrophages show high expression of 
ABCA1, ABCG1, and liver X receptor (LXR), therefore are resistant to foam cell formation 
(45). Mox macrophages, which are induced by oxidized phospholipids, account for 30% 
of all CD11b+/CD11c+ macrophages in advanced atherosclerotic lesions of low density 
lipoprotein receptor deficient (Ldlr−/−) mice (46). M4 macrophages are polarized by CXCL4, 
and show different transcriptome clusters compared with M1 and M2 macrophages (47). 
M4 macrophages are specifically identified from other macrophage subsets by combination 
of CD68, matrix metalloproteinase7 and S100A8 (48). M4 macrophages do not show 
phagocytosis ability, and show lower cholesterol efflux transporters, resulting in lower LDL 
content. Also, as CXCL4 has proinflammatory effects in atherosclerosis, M4 macrophages 
showing downregulation of CD163 mRNA could be defined as atherogenic (49).
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Lesional macrophages are regulated by entry of circulating monocytes, local macrophage 
proliferation and apoptosis. Infiltrating intima macrophages egress into the bloodstream, 
lymphatic vessels or undergo apoptosis and efferocytotic clearance. In early lesional stage, 
macrophage egression associated with atherosclerosis regression is observed, followed 
by plaque progression and declined macrophage emigration rate (50). The retention and 
emigration signals within the plaque determine the content of intraplaque macrophages 
(50). Several cell signals are involved in the retention and emigration of macrophage foam 
cells, such as CD146, LXR and neuroimmune guidance cues. Semaphorin 3A and Netrin-1, 
members of the neuroimmune guidance cue family, are responsible for macrophage retention, 
as they inhibit chemokine-directed monocyte migration, whereas EphrinB2 functions as a 
chemoattractant and promotes leukocyte migration (51). Netrin-1 acts as negative regulator 
of leukocyte migration, and inhibits CCL2 and CCL19 directed macrophage migration via its 
receptor UNC5b, which may role in chronic inflammation persistence (52). Semaphorin 3E 
regulates macrophage retention with its immunomodulatory function, inhibits macrophage 
motility and promotes macrophage accumulation in plaques (53). CD146 shows high 
correlation with plaque vulnerability and atherosclerosis inflammation, as the expression 
was mainly found in infiltrated macrophages and intraplaque blood vessels in human 
atherosclerotic plaques (54). In response to oxLDL uptake, CD146 drives CD36 internalization, 
and macrophages show reduced migratory capacities to CCL19 and CCL21, indicating CD146 
may play a pivotal role in atherosclerosis progression (55). Other factors such as adhesion 
molecule αDβ2 integrin and Junctional Adhesion Molecule C also contribute to macrophage 
retention by inhibiting cell movement (56).

Unlike retention phase, macrophage regression is associated with increased cell migratory 
capacity, associated with suppressed macrophages retention factors such as sempahorin 3E, 
netrin-1 and adhesion molecule expression (56). Atherosclerosis regression is promoted via 
CCR7-dependent emigration pathway, in which sterol regulatory element-binding proteins 
(SREBPs) increase CCR7 expression and promote CD68+ cell emigration from plaques 
(57). LXRs, especially phosphorylation to LXRα serine 198 (S198) also modulates CCR7 
expression. In the regression environment, low level of S198 phosphorylation was observed 
with high level of CCR7 expression, and nonphosphorylated LXRα in RAW 264.7 cells 
showed induction of anti-inflammatory genes and repression of proinflammatory genes (58). 
Remarkably, genetic disruption of LXRα phosphorylation increased phagocytic molecules 
expression and apoptotic cell removal by macrophages, leading to reduced necrotic cores 
(59). Comparing regressing plaque CD68+ cells with progressing cells identified high 
expression of genes associated with cellular movement such as actin and myosin, whereas cell 
adhesion-related genes such as cadherins and vinculin were downregulated (60). Collectively, 
macrophages in regression stage preferentially express genes to reduce cellular adhesion, 
promote cellular motility and inhibit inflammation. These findings demonstrate that several 
plaque development-associated factors undergo transcription changes leading to both 
quantitative and phenotypic changes of macrophages in atherosclerotic plaque.

LIPID-LADEN FOAM CELL FORMATION IN 
ATHEROSCLEROSIS
A prominent feature of an atherosclerotic lesion is the accumulation of foam cells within the 
lesion. Although vascular smooth muscle cells can transdifferentiate into macrophage-like 
cells and form lipid-laden foam cells, macrophages are the most prominent phagocytic cells 
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which contribute to the foam cell formation in atherosclerotic lesion (61-63). Accumulation 
of LDL particles in macrophages is mediated by scavenger receptors (64). Scavenger 
receptors SR-A, MARCO, CD36, SR-B1, lectin-like oxidized LDL rceptor-1 (LOX1) and CXCL16 
bind to oxLDL and promote foam cell formation, SR-A and CD36 mediating 75%–90% of 
LDL degradation in vitro (65). SR-A and CD36 have prominent roles in systemic and cellular 
metabolism of cholesterol (66). SR-A mediates monocyte-derived macrophages to invade 
the lesion area through interaction with Scavenger receptor expressed by endothelial cells 
(SREC) and lectin-like oxidized LDL rceptor-1 (LOX-1) expressed by endothelial cells, and also 
activates plaque macrophages and enhances macrophages to uptake modified LDL particles 
(67). CD36 also mediates cholesterol influx by binding and scavenging oxLDL on monocytes 
and macrophages (68). Although CD36 has less binding affinity to oxLDL compared to SR-A, 
it has wider extended cellular distribution to monocytes, macrophages, erythroid precursors, 
endothelium, and platelets (69). Scavenger receptor class BI (SR-BI) is highly homologous 
and has a similar ligand repertoire to CD36; It may bind to high-density lipoprotein (HDL), 
LDL, very low-density lipoprotein (VLDL), and modified forms of LDL such as acetylated 
LDL, oxLDL, and maleylated-bovine serum albumin (70). However, SR-BI shows distinct 
functions in lipoprotein metabolism since it facilitates selective cholesterol uptake and 
reverse cholesterol transport (71).

oxLDL endocytosed by scavenger receptors is delivered to lysosomes, and oxLDL-derived 
cholesterol and 7-ketocholesterol are esterified into oxidized fatty acids (FAs) (72). In the 
lysosomal compartment, cholesterol esters are hydrolyzed into free cholesterol through the 
lysosomal acid lipase (LIPA) (73). LIPA enhances cholesterol efflux through the production 
of 25- and 27-hydroxycholesterol and liver X receptor activation (74). The influx of cholesterol 
released from the lysosomal compartment into the endoplasmic reticulum (ER) via the NPC 
factor lead to significant activation of acyl-coenzyme A:cholesterol acyltransferase (ACAT) 
(75). At the ER, upon reaching certain cholesterol concentration, ACAT re-esterifies free 
cholesterol and forms cholesterol ester, which accumulates as cytoplasmic lipid droplets (75). 
Cytosolic lipid droplets in macrophages leads to foamy macrophage formation (66), and the 
lipids could be effluxed via lipolysis or lipophagy (65).

PHENOTYPIC CHANGES OF MACROPHAGES BY 
EXOGENOUS LIPID ACCUMULATION
Since macrophages play a fundamental role in foam cell formation in all stages of 
atherogenesis, it is important to understand the molecular mechanisms and phenotypes 
involved in oxLDL-induced foam cells (76). It was previously demonstrated that uptake of 
exogenous oxLDL induces inflammatory responses in macrophages leading to the initiation, 
development, and progression of atherosclerosis (77). The cholesterol accumulation 
induces macrophages to undergo inflammatory responses through an increase in TLR, 
inflammasome activation, and monocyte production from the bone marrow and spleen, 
which can ultimately lead to development of complex lesions (78). Modified LDL such as 
oxLDL functions as a ligand for a macrophage pattern recognition receptor, such as CD36, 
which cooperates with the TLR4-TLR6 heterodimer and induces inflammatory response 
(79). CD36-mediated uptake of oxLDL as a danger-associated molecular pattern generates 
NLRP3-activators, triggers the TLR signaling pathway, and activates MYD88 and NF-κB to 
produce proinflammatory cytokines and chemokines such as IL-1β and IL-18 (80). Uptake or 
formation of intracellular cholesterol crystals by macrophages leads to lysosomal damage 
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and dysfunction, resulting in NLRP3 inflammasome activation in atherosclerotic lesions 
(81). The NLRP3-inflammasome complex cleaves caspase-1, which catalyzes cytokine 
proproteins such as pro-IL-1β and pro-IL-18, promoting active cytokines as well as IL-1α (82). 
Furthermore, ERK signaling interacting with STAT1 signaling drives macrophage activation 
and atherosclerosis, and phospho-STAT1 and NF-κB associatively regulates ICAM-1 and iNOS 
expression (83). Early stages of plaque development are highly contributed by IFNγ and TLR4 
signals, leading to increased leukocyte attraction (84). Macrophage inflammatory responses 
are also triggered by mitochondrial metabolic switch, in which long-chain FA uptake, 
mitochondrial import and decreased FA oxidation collectively lead to mitochondrial structure 
and function alteration, superoxide production and NF-κB activation (85). Collectively, these 
findings suggest that hypercholesterolemia leads to macrophage-foam cell formation and 
exerts inflammatory effects through increasing inflammatory mediators (Fig. 1A). Moreover, 
it has been reported that FA synthesis is immediately reduced in response to TLR4 activation 
in RAW264.7 macrophages, leading to increases in eicosanoid synthesis and delayed 
sphingolipid and sterol biosynthesis, indicating that inflammatory mediators activate the 
innate immune system and alters mammalian lipid metabolism (86).

Interestingly, an overall reduction in inflammatory gene expression in peritoneal 
macrophages isolated from western diet-fed Ldlr−/− mice had been observed. The reduction 
of inflammatory gene expression was mediated through the accumulation of desmosterol, 
an agonist of the LXR (87). Macrophages synthesize anti-inflammatory FAs in response 
to LXRs, which exert anti-inflammatory functions through binding to G protein-coupled 
receptor 120, thereby repressing macrophage-induced tissue inflammation (88). Moreover, 
oxLDL treatment induced anti-inflammatory phenotype in macrophages, showing high level 
of TGF-β IL-10, mannose receptors, PPARγ and arginase-1, whereas IL-12 and iNOS showed 
low levels (89). Mox macrophage, noticeably different from conventional classically activated 
macrophage and alternatively-activated macrophage phenotypes (46). Mox macrophages 
show decreased phagocytotic and chemotactic capacity, and induce unique gene expression 
patterns, which is largely mediated by Nrf2 and consequent redox-regulating transcriptions. 
Surprisingly, although Mox macrophages are ineffective at clearing apoptotic cells due to low 
efferocytosis and weak phagocytic activity, theses macrophages are expected to exert anti-
inflammatory roles (90). Mox macrophages express IL-10 and vascular endothelial growth 
factor, which suppress T cell and macrophage activation and aid endothelial cell proliferation 
and survival. Anti-oxidization related enzymes such as heme oxygenase, sulfiredoxin-1 and 
thioredoxin reductase 1 further protect endothelial cells and smooth muscle cells from 
oxidative stress.

Thus, cholesterol and FA homeostasis are highly involved in the regulation of macrophage 
activity, and are regulated by several important transcription factors such as LXR and 
SREBP1 and 2 (91). SREBPs have related but distinct roles in embryogenesis, FA, and 
cholesterol syntheses (92). SREBP-2 preferentially induces genes involved in cellular 
cholesterol synthesis and import (92). SREBP-1c preferentially activate genes involved in 
FA, triglyceride metabolism, and phospholipids via activating the transcription of the acetyl 
CoA carboxylase, FA synthase, stearoyl CoA desaturase-1 (SCD1), and glycerol-3-phosphate 
acyltransferase (93,94). Oleate, the end product of de novo FA synthesis and a result of steric 
acid desaturation, specifically increases SREBP-1 nuclear accumulation and affect both the 
precursor and mature forms of SREBP-1 expression (95). As SREBP-1 isoforms activate FA 
synthesis and induce FA elongation and SCD1, FA biosynthesis and cholesterol biosynthesis 
are regulated transcriptionally by SREBPs (96). SREBP-1a promotes an acute inflammatory 
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response through activating Caspase-1 and secreting IL-1β and their downstream regulators. 
SREBP-1a also activates FA biosynthesis-related genes, indicating that its pivotal role 
in linking lipid metabolism and the innate immune response (97). Moreover, Oishi et 
al reported that SREBP1 not only promoted IL-1β production, but also contributed to 
the resolution of TLR4-induced gene activation through increase of anti-inflammatory 
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Figure 1. Phenotypic changes of macrophages by lipid uptake in atherosclerotic lesion. (A) Traditional model of oxLDL-mediated inflammatory processes in 
macrophages. oxLDL activates TLR pathway, leading to NF-κB activation and consecutive pro-inflammatory cytokine secretion such as Il1b, Il18 and Nlrp3. 
Intracellular ROS accompanied by CD36 signaling leads to mitochondrial metabolic reprogramming and pro-atherogenic signaling, and cholesterol crystals 
activate NLRP3 and inflammasome formation. (B) An overall diagram describing emerging concept of foam cell formation during hyperlipidemic conditions. 
Non-foamy macrophages which are newly infiltrated into the intima have low level of cytosolic lipids and show high level of inflammatory genes such as IL-1b 
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LOX-1, lectin-like oxidized LDL rceptor-1; SR, scavenger receptor.
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FA biosynthesis mRNAs such as Scd2, Fads, Elov, and inhibition of NFκB activation and 
corresponding decrease of Nos2, Cxcl10 and IL-6 (98).

Along with insulin and glucagon, LXR selectively regulates transcription of SREBP-1c, 
by inducing FA biosynthesis- associated gene expression and raising plasma triglyceride 
concentrations (99). Previous studies have proposed that oxLDL loading into macrophages 
negatively regulates transcription of TLR-induced proinflammatory gene expression 
at late stages (100). It has been reported that LXRs and ABCA1 repress inflammatory 
gene expression through disrupting MyD88 and TRAF6 recruitment, which lead to the 
inhibition of TLR2, 4, 9 and the downstream effectors NF-κB and MAPK (101). Upon 
hypercholesterolemia, deactivation of LXR-independent inflammatory gene expression leads 
to suppressed Nrf2 pathway, which regulates pentose phosphate pathway and the inhibition 
of macrophage inflammatory responses (102). These studies show that overloading lipids in 
cytosol of macrophages deactivate inflammatory responses, both through LXR- dependent 
and independent pathways.

IN VIVO MICE MODELS TO STUDY LIPID-LADEN FOAM 
CELLS IN ATHEROSCLEROTIC LESION
Mouse and rabbit models are widely used in atherosclerosis research, followed by pig and 
non-human primate models (103). Among these animal models, mouse model is most 
favored for its rapid reproduction, genetic manipulation ability, and reasonable time frame 
for atherogenesis formation and observation. However, mice have different lipid profile 
compared to humans, as most of the cholesterol is transported via HDL and retain low 
concentration of LDL and VLDL (104). Therefore, genetic modification of mice to achieve 
manipulation of their lipid metabolism and study atherosclerosis is required (105).

Apolipoprotein E-deficient (ApoE−/−) and Ldlr−/− mice are the most widely used along with 
the ApoE/LDLr double-knockout, ApoE3-Leiden, and proprotein convertase subtilisin/
kexin type 9 (Pcsk9) via adeno-associated virus (PCSk9-AAV) mice. Apolipoprotein E (ApoE) 
is a glycoprotein synthesized in the liver and the brain, and is present in all lipoproteins 
except LDL (105). It functions as a ligand for receptors that clear chylomicrons and VLDL 
remnants; hence, its deficiency leads to increased cholesterol in plasma, especially in 
chylomicron fractions and VLDL-sized particles (106). ApoE−/− mice retain significant 
hypercholesterolemia, and therefore develop atherosclerosis on a normal diet and rapidly 
develop plaques with more advanced lesion upon a high-cholesterol diet (107). However, 
as ApoE affects inflammation thereby influencing plaque development, the lipid profile is 
dissimilar to that of humans (103).

Ldlr−/− mice are deficient of the LDL receptor, which is a membrane receptor that mediates 
LDL endocytosis, thus maintaining the LDL plasma concentration. Mice without LDL 
receptors show modestly elevated plasma cholesterol concentrations on a normal diet, 
with increased intermediate-density lipoprotein- and LDL-sized particles, whereas HDL 
and triglycerides are unaffected (108). With high fat and cholesterol-based western diets, 
Ldlr−/− mice show dramatic changes in the lipoprotein profile, with atherosclerotic lesion 
development showing lipid profiles similar to that of humans (103).

Pcsk9 is a subtilisin serine protease that internalizes LDL receptors into lysosomes and 
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leads to increase in total plasma cholesterol. Pcsk9 expressed via adenovirus results in an 
LDL receptor knockout phenotype confirmed by decreased LDLr protein without change in 
LDLr mRNA level, a mechanism that is more rapid than SREBP-mediated transcription of 
LDLr (109). Pcsk9 regulates LDLr protein inhibitor in liver; therefore, mice lacking Pcsk9 
show increased LDLr protein, causing clearance of circulating lipoproteins and reduced 
plasma cholesterol concentration (110). The overexpression of functional Pcsk9-AAV can 
induce hyperlipidemia and atherosclerosis in normal mouse (111), (112). Although PCSK9 
expression shows gender variation due to different tissue distribution of AAVs and induces 
hyperlipidemia and atherosclerosis more effectively in male mice (113), injection of pcsk9-
AAV appears to be a very useful method to induce hyperlipidemia and foam cell formation in 
mouse aorta without cross-breeding to induce hyperlipidemia.

LESSON FROM THE PHENOTYPE ANALYSIS OF LESIONAL 
MACROPHAGES
Distinguishing the cellular components of a lesion is complex, as characterization of 
macrophages requires analysis of numerous cellular biomarkers many of which are shared 
with other cell types, such as dendritic cells (114). Researchers have developed various 
methods to investigate lipid-enriched foam cells within atherosclerotic lesions. Roberts 
and Thompson quantitated the degree of atherosclerosis through staining lipids in lesions 
with Oil red O (114). The use of Oil red O demonstrates the presence of triglycerides, lipids, 
and lipoproteins in atherosclerotic lesions, allowing researchers to quantitatively evaluate 
lesion formation. Macrophages within atherosclerotic plaques of ApoE−/− mice are identified 
using nanospheres conjugated with an anti-CD68 antibody using dual-modal US imaging 
and magnetic resonance imaging (115). CD68 is one of the macrophage membrane proteins 
that bind to oxLDL; therefore, this model allows researchers to observe oxLDL-enriched 
macrophages (116).

Feig and Fisher (117) demonstrated that foam cell-specific RNA in plaques is isolated by 
laser capture microdissection of plaques. The use of laser capture microdissection facilitates 
the isolation of foam cells and RNA extraction, which leads to observation of significantly 
decreased expression of inflammatory genes MCP-1 and VCAM-1, and upregulation of 
cholesterol efflux genes LXRα, ABCA1, and SR-BI in foam cells under atherosclerotic 
regression conditions. This technology also shows that CCR7, a migratory factor that is 
functionally required for depletion of foam cells during regression, is upregulated. A surgical 
sponge containing Matrigel may be implanted to harvest macrophages (118). Feeding high-
fat diet post subcutaneous insertion of surgical sponges led to the observation that lipid 
droplets are only found in macrophages and that foam cell formation induces pro-fibrotic 
transcriptions related to plaque stability rather than macrophage polarization towards 
an inflammatory or an anti-inflammatory state (118). Development of next-generation 
sequencing technologies and single-cell RNA sequencing allows deep sequencing and 
analyses of transcriptomes of diverse cells on single cell basis. The characterization of 
cells based on cell surface markers is widely used; however, as only few markers are known 
to specify a cell type, more studies are needed to identify markers such as the cluster of 
differentiation in immune cells and denotation of specific gene expression in heterogeneous 
cells. Recently, Kim et al. (62) developed a new method to analyze and isolate lipid-laden 
foam cells from atherosclerotic aorta. Using boron-dipyrromethene 493/503 (BODIPY493/503), 
lipid-laden foamy and non-foamy macrophages within atherosclerotic lesions were easily 
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sorted out using flow cytometry and underwent the gene expression analysis of foamy and 
non-foamy macrophages using bulk RNA sequencing. Interestingly, the gene expression 
profiles of intimal foamy and non-foamy macrophages were strikingly different, the foamy 
macrophages expressed less inflammatory genes compared to non-foamy counterpart. 
Further characterization of aortic leukocytes in single cell level confirmed that foamy 
macrophages expressed lipid-processing genes with less expression of inflammatory genes, 
whereas non-foamy macrophages expressed IL-1β and other inflammatory genes (62). In 
human aorta, as gene and protein expression analysis of human plaques evidenced that pro-
inflammatory macrophage markers are highly expressed in symptomatic plaques, whereas 
alternatively-activated macrophages markers, mannose receptor, CD163 and Th2 cytokines 
are highly related with disease progression (119). Collectively, the macrophages just recruited 
into subintimal space show inflammatory phenotype and contribute to lesion formation, 
after which become foamy cells with less inflammatory phenotype and high expression of 
lipid-processing genes (Fig. 1B). However, further studies analyzing lesional macrophages 
in single-cell resolution with fate-mapping approach are needed to understand the detailed 
phenotype changes of macrophages at different time points of the disease.

IN VITRO CELL MODELS TO UNDERSTAND PHENOTYPIC 
CHANGES OF MACROPHAGES BY LIPID UPTAKE
Since the macrophages residing in human and mouse atherosclerotic lesion have been 
affected by local micro-environmental factors for long period of time, the results obtained 
from in vitro macrophage culture may be different from in vivo data, and for this reason, the 
interpretation of results from in vitro cell experiments should be carefully done. Nevertheless, 
in vitro experiments are useful for monitoring explicit pathways or correlation between 
genes and rapidly obtaining and comprehending preliminary results. The treatment of 
oxLDL has been widely used to generate foamy macrophages and understand the molecular 
mechanism involved in phenotypic changes of macrophages during atherogenesis (120). 
The macrophages may be obtained from two main sources, animal primary cells or cell 
lines. Animal primary cells are isolated from living tissue and cultured in cell culture plates. 
Cell lines are immortalized through induction of mutations to inhibit cellular senescence 
(121), and therefore have the advantage that cells may be easily grown in vitro for prolonged 
periods of time. Cell lines are often used in research as they provide a pure population of cells, 
guaranteeing consistent material and reproducible results (122). One of the most commonly 
used macrophage cell lines is RAW264.7, which is a murine leukemia cell line (123). There are 
four immortalized human monocyte–macrophage cell lines: THP-1, U937, ML-2, and Mono 
Mac 6 cells (124). The THP-1 cell line shows a round single-cell morphology and expresses 
distinct monocytic markers (125). Upon treatment with phorbol-12-myristate-13-acetate or 
1,25-dihydroxyvitamin D3 (1,25[OH]2D3), THP-1 cells differentiate into flat and amoeboid 
macrophage phenotypes. However, as cell lines have undergone significant genetic mutations 
to become immortal, their cellular biology and phenotypes may differ from actual cells from 
living organisms; therefore, this limitation should be considered when using cell lines.

Macrophages are widely distributed throughout the body; therefore, primary macrophages 
may be obtained from various sources such as the bone marrow, spleen, and peritoneal cavity 
(126). Bone marrow derived macrophages (BMDMs) and peritoneal macrophages are the 
most frequently used cells in atherosclerotic experiments because of the easiness to obtain 
large number of cells. BMDMs may be obtained by isolating bone marrow cells and culturing 
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them with M-CSF or L929 cell-produced GM-CSF (127). It has been reported that BMDMs 
show high CD169 expression, moderate CD115 and MHCII expression, and low CD11b 
expression, whereas peritoneal macrophages show high CD115 and CD11b expression and a 
MHCII lower expression (128).The peritoneum cavity is a specialized compartment in which 
various immune cells localize, half of which are macrophages (129). Approximately 60% of 
the peritoneal cavity cells express CD11b and F4/80, hence characterized as macrophages 
(130), and most macrophages from peritoneum are maintained by embryonic precursors 
as tissue resident macrophages (131). Peritoneal cavity macrophages are classified into 
two subsets based on size differences, large peritoneal macrophages (LPMs) or small 
peritoneal macrophages (SPMs), which retain unique developmental characteristics and 
corresponding functions and phenotypes (130). LPMs predominate within the peritoneal 
macrophage population and represent approximately 90% of the population in unstimulated 
mice. LPMs are tissue-resident, therefore they self-maintain their population with minimal 
contribution from circulating monocytes (132). Transcriptional factor GATA-6 is involved 
in different lineages from the mesoderm during embryo development, and is restricted 
to the precardiac mesoderm, the embryonic heart tube, and the primitive gut (133). Also, 
Gautier et al revealed that GATA6 acts as a regulator of peritoneal macrophages (2). GATA-6 
is highly and specifically expressed in LPMs, whereas SPMs and other tissue macrophages 
do not show such expression level (133). The intraperitoneal injection of thioglycollate 
medium has been widely used to elicit and obtain a large number of peritoneal macrophages 
(134). Thioglycollate medium-elicited macrophages are treated with oxLDL to generate 
foamy macrophages (87). However, along with the Bacillus Calmette-Guérin vaccine, 
LPS, or zymosan, thioglycollate medium acts as a sterile irritant and promotes the rapid 
migration of macrophages to the omentum (135). The use of thioglycollate medium or LPS 
stimulation leads to inflammatory stimuli within the peritoneal cavity, leading to irretrievable 
LPMs to disappear rapidly in the lavage and promoting the macrophage disappearance 
reaction (136). Surprisingly, blood monocyte-derived SPMs, which are less abundant and 
only occupy 10% of normal peritoneal macrophages, migrate to the peritoneal cavity in 
response to inflammation stimulation and becomes the predominant population. Although 
both subsets orchestrate the immune response and maintain tissue homeostasis, these 2 
different peritoneal macrophage subsets show heterogeneous cell markers (137). These 2 
populations are expressed differently on surface molecules such as granulocytic marker 
(Gr-1), MHC II, CD11b and CD11c. LPMs express higher levels of CD11b, F4/80, CD40, CD80, 
CD86, CD11c, and TLR4 than SPMs, and only LPMS are known to express Gr-1 and AA4.1. 
In contrast, only SPMs express a high level of the MHC II marker, CD62L and Dectin-1, 
and express low level of F4/80, CD11b, GR-1 and CD86 (137). Thus thioglycollate-elicited 
peritoneal macrophages may have different cellular responses to oxLDL uptake compared to 
the peritoneal macrophages in resting status. Recently, we analyzed the cellular responses 
of thioglycollate-elicited and resting peritoneal macrophages upon oxLDL treatment 
and compared their gene expressions with the gene expression pattern of lesional foamy 
macrophages shown in our previous report (62). Interestingly, oxLDL stimulation to resident 
peritoneal macrophages showed gene expression changes similar to those of intimal foamy 
macrophages, whereas thioglycollate-elicited peritoneal macrophages, BMDM, RAW264.7 
cells did not (unpublished/private observation). These collectively suggest resident peritoneal 
macrophages may be the optimized in vitro cell system for studying foam cells in vitro. 
And further studies need to be done with resident peritoneal macrophages to dissect the 
molecular mechanism of phenotypic changes upon oxLDL treatment.
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CONCLUDING REMARKS

Recent technical advances allow us to analyze the gene expression, chromatin accessibility, 
and localization of gene expression based on single cell level. Two independent groups firstly 
adopted single cell RNA sequencing to analyze the cellular heterogeneity of atherosclerotic 
aorta (138,139). Kim et al. (62) analyzed the gene expression patterns of intimal foam 
and nonfoamy macrophages using bulk- and single cell RNA sequencing. Cochain et al. 
(139) showed three aortic macrophage populations including resident-like macrophages, 
inflammatory macrophages, and Trem2hi macrophages. Interestingly, we also found similar 
gene expression patterns in previous bulk and single cell RNA sequencing (62) and concluded 
that the “Trem2hi macrophages” are intimal foamy macrophages and other two macrophages 
are intimal non-foamy (“inflammatory”) and adventitial macrophages (“resident-like”) 
(140). The consistency of single cell RNA sequencing data obtained by independent research 
groups indicate that single cell RNA sequencing is a highly useful technique to understand 
the phenotypic changes of macrophages during the progression of atherosclerosis. It 
seems that the single cell gene expression map in atherosclerosis will be available in near 
future. In addition to gene expression profiling, the analysis of proteomics/metabolomics 
and chromatic accessibility on single cell level will provide us new understanding on 
pathogenesis of atherosclerosis and molecular or cellular target to treat atherosclerosis. As 
next approach, we will then validate the new therapeutic targets and molecular mechanisms 
using in vitro cell system most mimicking in vivo cellular phenotypes.
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