• Title/Summary/Keyword: lipid A

Search Result 8,122, Processing Time 0.046 seconds

Effects of Hybrid Lipid Concentration on Equilibrium Domain Size in a Lipid Bilayer Immersed in Water

  • Sornbundit, Kan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1899-1903
    • /
    • 2018
  • The effects of introducing hybrid lipids to a lipid bilayer containing saturated and unsaturated lipids immersed in water were studied. The lipid and water molecules were modeled as coarse-grained particles. All particles were simulated by using the dissipative particle dynamics method. The results showed that the hybrid lipids accumulated at the interface between the saturated and the unsaturated lipid domains. The relation between the hybrid lipid concentration and the equilibrium domain size was obtained. Moreover, the sizes of the simulated lipid domains are consistent with that given by the lipid raft definition.

Lipid A as a Drug Target and Therapeutic Molecule

  • Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.510-516
    • /
    • 2015
  • In this review, lipid A, from its discovery to recent findings, is presented as a drug target and therapeutic molecule. First, the biosynthetic pathway for lipid A, the Raetz pathway, serves as a good drug target for antibiotic development. Several assay methods used to screen for inhibitors of lipid A synthesis will be presented, and some of the promising lead compounds will be described. Second, utilization of lipid A biosynthetic pathways by various bacterial species can generate modified lipid A molecules with therapeutic value.

Lipid A of Salmonella typhimurium Suppressed T-cell Mitogen-Induced Proliferation of Murine spleen Cells in the Presence of Macrophage (Salmonella typhimurium lipid A를 처리한 식세포 존재 조건에서 mitogen에 유도되는 이자 세포의 증식억제)

  • Kang, Gyong-Suk;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.31-38
    • /
    • 2007
  • Infection with virulent or attenuated Salmonella typhimuriumhas known to induce reduction in proliferative responses of spleen cells. We investigated a role of lipid A from S. typhimurium, a B cell mitogen, on proliferation of spleen cells by T cell mitogens such as concanavaline A and phytohemagglutinin under in vitro and ex vivo conditions. Lipid A alone induced proliferation of spleen cells in vitroin a dose-dependent manner. However, subsequent treatment of concanavaline A or phytohemagglutin in after lipid A treatment induced proliferation suppression of murine spleen cells in vitro and ex vivo. Removal of macrophages from spleen cells, which were obtained from a lipid A-injected mouse, restored proliferation by concanavaline A and phytohemagglutinin, indicating that macrophages appeared to play a role in lipid A-induced suppression. Secreted molecules from macrophages did not accounted for the suppression because suppressive effect was not achieved when the supernatant from macrophage-containing spleen cell culture was conditoned to macrophage-depleted spleen cell culture. Co-culture of spleen cells from lipid A-treated and - untreated mice showed proliferation suppression as increasing cell numbers of lipid A-treated mouse. These data suggested that the cell-to-cell contact of macrophage with splenic lymphocyte cells is responsible for immune responses against lipid A, which is applicable to the case of human S. typhi infection.

Optimal Dietary Protein and Lipid Levels for Growth of Juvenile Israeli Carp Cyprinus carpio

  • Aminikhoei, Zahra;Choi, Jin;Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • A feeding trial of four dietary protein levels (20, 30, 40, and 50%) and two lipid levels (7 and 14%) with a factorial design was conducted to determine the optimal dietary protein and lipid levels for juvenile Israeli carp Cyprinus carpio. Triplicate groups of fish (average body weight, $1.3{\pm}0.02g$) were fed the experimental diets for 9 weeks. Survival of fish was not affected by either dietary protein or dietary lipid level. Weight gain and feed efficiency increased as dietary protein levels increased up to 40 and 50%, respectively. Weight gain was higher in fish fed the high-lipid diets with 20 and 40% protein content. Feeding efficiency increased as the dietary lipid level increased for the 30, 40, and 50% protein diets. Daily feed intake decreased with increasing protein level and the minimum feed consumption was observed in fish fed the 50% protein diet with 14% lipid content. Moisture and lipid contents of the whole body were affected by both dietary protein and lipid levels. The crude lipid content of fish fed the 14% lipid diet was higher than that of fish fed the 7% lipid diet at each protein level. The results of this study indicate that a diet containing 40% protein with 14% lipid content is optimal for the growth and effective protein utilization of juvenile Israeli carp.

Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method

  • Park, Jaeyeon;Jeong, Hae Jin;Yoon, Eun Young;Moon, Seung Joo
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.391-401
    • /
    • 2016
  • To develop an easy and rapid method of quantifying lipid contents of marine dinoflagellates, we quantified lipid contents of common dinoflagellate species using a colorimetric method based on the sulpho-phospho-vanillin reaction. In this method, the optical density measured using a spectrophotometer was significantly positively correlated with the known lipid content of a standard oil (Canola oil). When using this method, the lipid content of each of the dinoflagellates Alexandrium minutum, Prorocentrum micans, P. minimum, and Lingulodinium polyedrum was also significantly positively correlated with the optical density and equivalent intensity of color. Thus, when comparing the color intensity or the optical density of a sample of a microalgal species with known color intensities or optical density, the lipid content of the target species could be rapidly quantified. Furthermore, the results of the sensitivity tests showed that only $1-3{\times}10^5cells$ of P. minimum and A. minutum, $10^4cells$ of P. micans, and $10^3cells$ of L. polyedrum (approximately 1-5 mL of dense cultures) were needed to determine the lipid content per cell. When the lipid content per cell of 9 dinoflagellates, a diatom, and a chlorophyte was analyzed using this method, the lipid content per cell of these microalgae, with the exception of the diatom, were significantly positively correlated with cell size, however, volume specific lipid content per cell was negatively correlated with cell size. Thus, this sulpho-phospho-vanillin method is an easy and rapid method of quantifying the lipid content of autotrophic, mixotrophic, and heterotrophic dinoflagellate species.

Effects of Polyacetylene Compounds from Panax Ginseng C.A. Meyer on $CCl_4$-Induced Lipid Peroxidation in Mouse Liver

  • Kim, Hye-Young;Lee, You-Hui;Kim, Shin-Il
    • Toxicological Research
    • /
    • v.4 no.1
    • /
    • pp.13-22
    • /
    • 1988
  • The inhibitory effect of three polyacetylene compounds, panaxydol, panaxynol and panaxytriol isolated from Panax ginseng C.A. Meyer on $CCl_4$induced lipid peroxidation in vivo and in vitro hepatic microsomal lipid peroxidation induced by ADP-$Fe^{3+}$, NADPH and NADPH-cytochrome P-450 reductase were investigated. Their effects on lowering the lipid peroxide levels both in serum and liver and lowering the serum enzyme (GOT, GPT, LDH) activities without the $CCl_4$-induction were also determined. Male ICR mice were pretreated i.p. with polyacetylene compounds or DL-${\alpha}$-tocopherol before administration of $CCl_4$ i.p. and 20 hr after the administration of $CCl_4,$ serum and liver were analyzed. Hepatic microsome was isolated and used for the in vitro NADPH-dependent lipid peroxidation system. Except for panaxynol, treatment with polyacetylenes to control mice did not reduce the levels of lipid peroxides and serum enzyme activities. Panaxynol itself inhibited lipid peroxidation in the liver of normal mice. Polyacetylene compounds protected from the $CCl_4$-induced hepatic lipid peroxidation and lowered serum lipid peroxide levels. Polyacetylenes also inhibited the in virto hepatic microsomal lipid peroxidation in a dose-dependent manner. The results suggest that panaxydol, panaxynol and panaxytriol seem to be the antioxidant components which contribute the anti-aging activities of Panax ginseng C.A. Meyer.

  • PDF

Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B.;Ahn, D.U.
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.152-163
    • /
    • 2005
  • Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

Culture Tube Method for the Determination of Total Cholesterol in Egg Yolk Lipid (Culture Tube 방법에 의한 난황중의 Cholesterol 정량)

  • Ha, Yeong-Lae;Kim, Jeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.1032-1037
    • /
    • 1994
  • A simple, reproducible , and accurate enzymatic method using a cholesterol assay kit was developed to quantify total cholesterol content in egg yolk. Total egg yolk lipid was extracted with hexane : isopropanol(3 : 2, v/v) mixture. Samples containing various amount of the total lipid(0-3mg) in optically identifical culture tubes were reacted for 10 min in a water bath (37$^{\circ}C$) with the enzyme solution (5ml) from the cholesterol assay kit. Cholesterol content of the reaction mixturesin culture tubes was spectrophotometrically determined by two different ways : (1) using the culture tube as a curvette(designate culture tube method ; CTM) and (2) the quartz cvette containing the reaction mixture transferred from the culture tube (designate standard cvette method, SCM). CTM revealed lower cholesterol content in 0.1-1.0mg lipid sample range that SCM did, but not significant. For more than 2.0mg lipid sample, CTM gave significantly (p<0.01) lower cholesterol content relative to that by SCM, suggesting that SCM give a false positive result from the sample containing more than 2 mg lipid due to the interference of absorbance by lipid dispersed in the reaction solution . Cholesterol content of less than 1.0mg lipid sample by CTM was proportional to the amount of lipid used, but its linear relationship was not seen in more than 2mg lipid sample. Thus, to determine the appropriate lipid amounts (mg) analyzed . A constant level (41$\mu\textrm{g}$/mg) of cholesterol concentration was observed from the sample containing 0.1-1mg lipid. after which the cholesterol level was dropped to less than 41$\mu\textrm{g}$ /mg. Cholesterol concentration in egg yolk samples quantified by CTM was in accordance with that by GC method. These results suggest that CTM is an useful method for the quantification of cholesterol in egg yolk lipid and other lipids as well.

  • PDF

A Comprehensive Understanding of Model Lipid Membranes: Concepts to Applications

  • Sonam Baghel;Monika Khurana
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • The cell membrane, also known as the biological membrane, surrounds every living cell. The main components of cell membranes are lipids and therefore called as lipid membranes. These membranes are mainly made up of a two-dimensional lipid bilayer along with integral and peripheral proteins. The complex nature of lipid membranes makes it difficult to study and hence artificial lipid membranes are prepared which mimic the original lipid membranes. These artificial lipid membranes are prepared from phospholipid vesicles (liposomes). The liposomes are formed when self-forming phospholipid bilayer comes in contact with water. Liposomes can be unilamellar or multilamellar vesicles which comprises of phospholipids that can be produced naturally or synthetically. The phospholipids are non-toxic, biodegradable and are readily produced on a large scale. These liposomes are mostly used in the drug delivery systems. This paper offers comprehensive literature with insights on developing basic understanding of lipid membranes from its structure, organization, and phase behavior to its potential use in biomedical applications. The progress in the field of artificial membrane models considering methods of preparation of liposomes for mimicking lipid membranes, interactions between the lipid membranes, and characterizing techniques such as UV-visible, FTIR, Calorimetry and X-ray diffraction are explained in a concise manner.

Property Characterization and Lipid - Compositional Analysis of Lipid Granules Isolated from an Oleaginous Yeast Rhodotorula glutinis

  • Ham, Kyung-Sik;Rhee, Joon-Shick
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.211-215
    • /
    • 1998
  • Preparative isolation of lipid granules from Fhodotorula glutinis, which has been studied for long time to produce edible lipids, was carried out by flotation method in Ficoll-Linear density gradient. When the isolated lipid granules were suspended in a series of solutions containing varying concentration of osmotic stabilizer (sorbitoal and mannitol) ranging from 0.8M to 0M, the lipid granules appeared to be disrupted at a concentration between 0.8M and 0.7, and again at a concentration below 0.1M, suggesting that lipid granules have a membraneous structure and that at least two types of lipid granules are present. Compositional analysis of lipids from lipid granules revealed that lipids are composed mainly of neutral lipids (87.8% of total lipids), predominantly as triacylglycerols (71.89%). Marked differences were observed inphospholipids between lipids of lipid granules and those of whole cells . The major components of phospholipids in lipid granules and inwhole cells are phosphatidylcholine(38.6%) and phosphatidylserine(42.8%), respectively. In addition, significant differences were also observed in the fatty acid composition of phospholipids. As phospholipids are important structural components of membranes, these differences lead to the suggesting that the membrane of lipid granules may be distinct functionally and structurally from other membranes of yeast cells. The major fatty acid components of neutral lipidss of whole cells and lipid granules are palmitic , oleic and linoleic acid. However , degreeof fatty acid unsaturation of neutal lipids of lipid granules was much lower than that of neutral lipids of whole cells.

  • PDF