Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.1.031

Lipid A of Salmonella typhimurium Suppressed T-cell Mitogen-Induced Proliferation of Murine spleen Cells in the Presence of Macrophage  

Kang, Gyong-Suk (Department of Family Medicine, Daehan-Wellness Hospital)
Chung, Kyung-Tae (Department of Life Science and Biotechnology, Dong-Eui University)
Publication Information
Journal of Life Science / v.17, no.1, 2007 , pp. 31-38 More about this Journal
Abstract
Infection with virulent or attenuated Salmonella typhimuriumhas known to induce reduction in proliferative responses of spleen cells. We investigated a role of lipid A from S. typhimurium, a B cell mitogen, on proliferation of spleen cells by T cell mitogens such as concanavaline A and phytohemagglutinin under in vitro and ex vivo conditions. Lipid A alone induced proliferation of spleen cells in vitroin a dose-dependent manner. However, subsequent treatment of concanavaline A or phytohemagglutin in after lipid A treatment induced proliferation suppression of murine spleen cells in vitro and ex vivo. Removal of macrophages from spleen cells, which were obtained from a lipid A-injected mouse, restored proliferation by concanavaline A and phytohemagglutinin, indicating that macrophages appeared to play a role in lipid A-induced suppression. Secreted molecules from macrophages did not accounted for the suppression because suppressive effect was not achieved when the supernatant from macrophage-containing spleen cell culture was conditoned to macrophage-depleted spleen cell culture. Co-culture of spleen cells from lipid A-treated and - untreated mice showed proliferation suppression as increasing cell numbers of lipid A-treated mouse. These data suggested that the cell-to-cell contact of macrophage with splenic lymphocyte cells is responsible for immune responses against lipid A, which is applicable to the case of human S. typhi infection.
Keywords
Salmonella typhimurium; lipid A; immunosuppression; lymphocyte proliferation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wright, S. D., R. A. Ramos, P. S. Tobias, R. J. Ulevitch and J. C. Mathison. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249, 1431-1433   DOI
2 Perera, P. Y., T. N. Mayadas, O. Takeuchi, S. Akira, M. Zaks-Zilberman, S. M. Goyert and S. N. Vogel. 2001. CD11b/CD18 acts in concert with CD14 and Toll-like receptor(TLR)4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J. Immunol. 166, 574-581   DOI
3 Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085-2088   DOI   ScienceOn
4 S. T. Qureshi, L. Lariviere, G. Leveque, S. Clermont, K. J. Moore, P. Gros and D. Malo. 1999. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615-625   DOI   ScienceOn
5 Schumann, R. R., S. R. Leong, G. W. Flaggs, P. W. Gray, S. D. Wright, J. C. Mathison and R. J. Ulevitch. 1990. Structure and function of lipopolysaccharide binding protein Science, 249, 1429-1431   DOI
6 Schwacha, M. G., J. J. Meissler Jr. and T. K. Eisenstein, 1998. Salmonella typhimurium infection in mice induces nitric oxide-mediated immunosuppreassion through a natural killer cell-dependent pathway. Infect. Immunol. 66, 5862-5866
7 Sergeva, M. G., M. V. Gonchas, A. T. Mevkeh and S. D. Varfolomeyev. 1997. Prostaglandin E2 biphasic control of lymphocyte proliferation, inhibition by picomolar concentrations. FEBS. Lett. 418, 235-238   DOI   ScienceOn
8 Stickland, D., U. R. Kees and P. G. Holt. 1996. Regulation of T-cell activation in the lung alveolar macrophages induce reversible T-cell anergy in vitro associated with inhibition of interleukin-2 receptor signal transduction. Immunology, 87, 250-258   DOI   ScienceOn
9 Sultzer, B. M. and G. Goodman. 1976. Endotoxin protein: a B cell mitogen and polyclonal activator of C3H/HeJ lymphocytes. J. Exp. Med. 144, 821-827   DOI   ScienceOn
10 Tomioka, H and H. Saito. 1992. Immunosuppressive macrophages induced in Mycobacterium avium complex infection induced in mice. Kekkaku. 67, 47-54. (Japanese)
11 Lissner, R. C., R. N. Swanson and A. D. Oberien, 1983. Genetic control of the innate resistance of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J. Immunol. 131, 3006-3013
12 Luderitz, O. M., C. Freudenberg, V. Galanos, E. T. Lehmann and D. H. Rietschel, 1982. Lipopolysaccharides of gram-negative bacteria. Curr. Top. Membr. Transp. 17, 79-151   DOI
13 Ly, I. A. and R. L. Michell. 1974. Separation of mouse spleen cells by passage through colums of sephadex G-10. J. Immunol. Methods. 5, 239-247   DOI   ScienceOn
14 Matsui, K. and T. Arai. 1993. Inhibition of mitogen-induced proliferation of spleen lymphocytes is correlated with the reduction of cell mediated immunity in Salmonella infection in mice. FEMS. Microbiol. Lett. 112, 113-118   DOI   ScienceOn
15 Matsui, K. and T. Arai. 1994. Cell-free extract of Salmonella inhibits mitogen-induced proliferation of murine splenic T-lymphocytes. FEMS. Immunol. Med. Microbiol. 8, 141-150   DOI   ScienceOn
16 Matsui, K. and T. Arai. 1998. Salmonella infection-induced non-responsiveness of murine splenic T-lymphocytes to interleukin-2 (IL-2) involves inhibition of IL-2 receptor gamma chain expression. FEMS. Immunol. Med. Microbiol. 20, 175-180   DOI
17 Metzger, Z., J. T. Hoffeld and J. J. Oppenheim. 1980. Macrophage-mediated suppression. I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte responses. J. Immunol. 124, 983-988
18 Brunner, H. and H. P. Kroll. 1989. Reduced proliferative response of mouse spleen cells to mitogens during infection with Salmonella typhimurium or Listeria monocytogeneses. Micro. Pathog. 6, 265-276   DOI   ScienceOn
19 Nabeshima, S., M. Nomoto, G. Matsuzaki, K. Kishihara, H. Taniguchi, S. I. Yoshida and K. Nomoto. 1999. T-cell hyporesponsiveness induced by activated macrophages through nitric oxide production in mice infected with Mycobacterium tuberculosis. Infect .Immun. 67, 3221-3226
20 Peavy, D. L., J. W Shands, W. H. Adler and R T. Smith. 1973. Mitogenicity of bacterial endotoxins: characterization of the mitogenic principle. J. Immunol. 111, 352-357
21 Caroff, M., D. Karibian, J. M. Cavaillon and N. Haeffner-Cavaillon. 2002. Structural and functional analyses of bacterial lipopolysaccaharides. Microbes Infect. 4, 915-926   DOI   ScienceOn
22 Collins, F. M. 1974. Vaccins and cell-mediated immunity. Bacteriol. Rev. 38, 371-402
23 Eisenstein, T. K. and B. M. Sultzer, 1983. Immunity to Salmonella infection. Adv. Exp. Med. Biol. 162, 261-296   DOI
24 Elliot, L., W. Brooks and T. Roszman. 1993. Inhibition of anti-CD3 monoclonal antibody-induced T-cell proliferation and interleukin-2 secretion by physiologic combinations of dexamethasone and prostaglandin E2. Cell. Mol. Neurobiol. 13, 579-592   DOI   ScienceOn
25 Erridge, C., E. Bennett-Guerro and I. R. Poxton, 2002. Structure and function of lipopolysaccharides. Microbes Infect. 4, 837-851   DOI   ScienceOn
26 Howard, M. and A. O'Garra. 1992. Biological properties of interleukin 10. Immunol. Today 13, 198-200   DOI   ScienceOn
27 Albina, J. E., J. A. Abata and W. L Henry Jr,. 1991.Nitric oxide production is required for murine resident macrophages to suppress mitogen-stimulated T-cell proliferation. J. Immunol. 147, 144-148
28 Huang, D., M. G. Schwacha and T. K. Eisenstein. 1996. Attenuated Salmonella vaccine-induced suppression of murine spleen cell responses to mitogen is mediated by macrophage nitric oxide quantitative aspects. Infect. Immunol. 64, 3786-3792
29 Johnson, R. B., S. Kohl and W. G. Bessler. 1983. Polyclonal activayion of B-lymphocytes in vivo by Salmonella typhimurium lipoprotein. Infect. Immunol. 39, 1481-1484
30 Khan, I. A., T. Matsuura and L. H. Kasper. 1996. Activation-mediated CD4+ T cell unresponsiveness during acute Toxoplasma gondii infection in mice. Int. Immunol. 8, 887-896   DOI   ScienceOn
31 Al-Ramadi, B. K., J. M. Greene, J. J. Meissler Jr. and T. K Eisenstein. 1992. Immunsuppression induced by attenuated Salmonella; effect of LPS responsiveness on development of suppression. Microb. Pathog. 12, 267-278   DOI   ScienceOn
32 Bloembergen P, F. M. Hofhuis, C. Hol and H. van Dijk. 1990. Endotoxin-induced auto-immunity in mice. III. Comparison of different endotoxin preparations. Int. Arch. Allergy Appl. Immunol. 92, 124-130   DOI
33 Shimizu, T., C. Sano and H. Tomioka. 2004. The role of B7 molecules in the cell contact-mediated suppression of T cell mitogenesis by immunosuppressive macrophages induced with mycobacterial infection. Clin. Exp. lmmunol. 135, 373-379   DOI   ScienceOn
34 Andersson, J., G. M. Edelman, G. Moeller and O. Sjerberg. 1972. Activation of B lymphocytes by locally concentrated concanavalin A. Eur. J. Immunol. 2, 233-235   DOI   ScienceOn
35 Anne, T. M. and C. W. Pierce. 1981. Conversion of soluble immune response suppressor to macrophage-derived suppressor factor by peroxide. Proc. Natl. Acd. Sci. 78, 5099-5103   DOI   ScienceOn