Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.12.7

Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method  

Park, Jaeyeon (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)
Jeong, Hae Jin (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)
Yoon, Eun Young (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)
Moon, Seung Joo (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)
Publication Information
ALGAE / v.31, no.4, 2016 , pp. 391-401 More about this Journal
Abstract
To develop an easy and rapid method of quantifying lipid contents of marine dinoflagellates, we quantified lipid contents of common dinoflagellate species using a colorimetric method based on the sulpho-phospho-vanillin reaction. In this method, the optical density measured using a spectrophotometer was significantly positively correlated with the known lipid content of a standard oil (Canola oil). When using this method, the lipid content of each of the dinoflagellates Alexandrium minutum, Prorocentrum micans, P. minimum, and Lingulodinium polyedrum was also significantly positively correlated with the optical density and equivalent intensity of color. Thus, when comparing the color intensity or the optical density of a sample of a microalgal species with known color intensities or optical density, the lipid content of the target species could be rapidly quantified. Furthermore, the results of the sensitivity tests showed that only $1-3{\times}10^5cells$ of P. minimum and A. minutum, $10^4cells$ of P. micans, and $10^3cells$ of L. polyedrum (approximately 1-5 mL of dense cultures) were needed to determine the lipid content per cell. When the lipid content per cell of 9 dinoflagellates, a diatom, and a chlorophyte was analyzed using this method, the lipid content per cell of these microalgae, with the exception of the diatom, were significantly positively correlated with cell size, however, volume specific lipid content per cell was negatively correlated with cell size. Thus, this sulpho-phospho-vanillin method is an easy and rapid method of quantifying the lipid content of autotrophic, mixotrophic, and heterotrophic dinoflagellate species.
Keywords
cell size; intensity of color; lipid amount; lipid content per cell; sulfo-phospho-vanilin (SPV); volume specific lipid content;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48:1146-1151.   DOI
2 Costas, E. 1990. Genetic variability in growth rates of marine dinoflagellates. Genetica 82:99-102.   DOI
3 de la Jara, A., Mendoza, H., Martel, A. Molina, C., Nordstron, L., de la Rosa, V. & Diaz, R. 2003. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J. Appl. Phycol. 15:433-438.   DOI
4 Doan, T. T. Y., Sivaloganathan, B. & Obbard, J. P. 2011. Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534-2544.   DOI
5 Drevon, B. & Schmit, J. M. 1964. La reaction sulpho-phospho-vanillique dans l'etude des lipides seriques. Bull. Trav. Soc. Pharm. Lyon 8:173-178.
6 Eppley, R. W. & Sloan, P. R. 1966. Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol. Plant. 19:47-59.   DOI
7 Folch, J., Lees, M. & Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
8 Fuentes-Grunewald, C., Bayliss, C., Fonlut, F. & Chapuli, E. 2016. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 218:533-540.   DOI
9 Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014a. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163.   DOI
10 Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014c. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152.   DOI
11 Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40.   DOI
12 Fuentes-Grunewald, C., Garces, E., Alacid, E., Sampedro, N., Rossi, S. & Camp, J. 2012. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J. Ind. Microbiol. Biotechnol. 39:207-216.   DOI
13 Furnas, M. J. 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton Res. 12:1117-1151.   DOI
14 Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H. & Lim, A. S. 2014b. Morphological characterization of Symbiodinium minutum and S. psygmophilum belonging to clade B. Algae 29:299-310.   DOI
15 Malapascua, J. R., Chou, H.-N., Lu, W.-J. & Lan, J. C.-W. 2012. Development of an indirect method of microalgal lipid quantification using a lysochrome dye, Nile red. Afr. J. Biotechnol. 11:13518-13527.
16 Mansour, M. P., Volkman, J. K., Jackson, A. E. & Blackburn. S. I. 1999. The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35:710-720.   DOI
17 Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. & Yang, J. W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155:330-333.
18 Muscatine, L. 1990. The role of symbiotic algae in carbon and energy flux in reef corals. In Dubinski, Z. (Ed.) Coral reefs: ecosystems of the world. Elsevier, NY, p. 75-87.
19 Piretti, M. V., Pagliuca, G., Boni, L., Pistocchi, R., Diamante, M. & Gazzotti, T. 1997. Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. J. Phycol. 33:61-67.   DOI
20 Grzebyk, D., Bechemin, C., Ward, C. J., Verite, C., Codd, G. A. & Maestrini, S. Y. 2003. Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minutum. J. Plankton Res. 25:1185-1199.   DOI
21 Guerrini, F., Pezzolesi, L., Feller, A., Riccardi, M., Ciminiello, P., Dell'Aversano, C., Tartaglione, L., Dello Iacovo, E., Fattorusso, E., Forino, M. & Pistocchi, R. 2010. Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. Toxicon 55:211-220.   DOI
22 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
23 Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99.   DOI
24 Hansen, P. J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114:327-334.   DOI
25 Hao, Z., Liu, P., Yang, X., Shi, J. & Zhang, S. 2013. Screening method for lipid-content microalgae based on sulpho-phospho-vanillin reaction. Adv. Mater. Res. 610-613:3532-3535.
26 Inouye, L. S. & Lotufo, G. R. 2006. Comparison of macrogravimetric and micro-colorimetric lipid determination methods. Talanta 70:584-587.   DOI
27 Fuentes-Grunewald, C., Garces, E., Rossi, S. & Camp, J. 2009. Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36:1215-1224.   DOI
28 Anderson, D. M. 1997. Turning back the harmful red tide. Nature 388:513-514.   DOI
29 Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153.   DOI
30 Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401.   DOI
31 Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.   DOI
32 Byreddy, A. R., Gupta, A., Barrow, C. J. & Puri, M. 2016. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Methods 125:28-32.   DOI
33 Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409.   DOI
34 Kagami, M. & Urabe, J. 2001. Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa. Limnology 2:111-117.   DOI
35 Vatassery, G. T., Sheridan, M. A., Krezowski, A. M., Divine, A. S. & Bach, H. L. 1981. Use of the sulpho-phospo-vanillin reaction in a routine method for determining total lipids in human cerebrospinal fluid. Clin. Biochem. 14:21-24.   DOI
36 Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285.   DOI
37 Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609.   DOI
38 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
39 Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microbial Ecol. 40:133-150.   DOI
40 Kondo, K., Seike, Y. & Date, Y. 1990. Red tides in the brackish Lake Nakanoumi (II). Relationships between the occurrence of Prorocentrum minimum red tide and environmental conditions. Bull. Plankton Soc. Jpn. 37:19-34.